Search Results

Documents authored by Yang, Elizabeth


Document
Domain Sparsification of Discrete Distributions Using Entropic Independence

Authors: Nima Anari, Michał Dereziński, Thuy-Duong Vuong, and Elizabeth Yang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present a framework for speeding up the time it takes to sample from discrete distributions μ defined over subsets of size k of a ground set of n elements, in the regime where k is much smaller than n. We show that if one has access to estimates of marginals P_{S∼ μ} {i ∈ S}, then the task of sampling from μ can be reduced to sampling from related distributions ν supported on size k subsets of a ground set of only n^{1-α}⋅ poly(k) elements. Here, 1/α ∈ [1, k] is the parameter of entropic independence for μ. Further, our algorithm only requires sparsified distributions ν that are obtained by applying a sparse (mostly 0) external field to μ, an operation that for many distributions μ of interest, retains algorithmic tractability of sampling from ν. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of μ, and in return reduce the amortized cost needed to produce many samples from the distribution μ, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where α = Ω(1), our result reduces the domain size, and as a corollary, the cost-per-sample, by a poly(n) factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Dereziński who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to α = 1). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over O(1/k) relative error established in prior work.

Cite as

Nima Anari, Michał Dereziński, Thuy-Duong Vuong, and Elizabeth Yang. Domain Sparsification of Discrete Distributions Using Entropic Independence. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anari_et_al:LIPIcs.ITCS.2022.5,
  author =	{Anari, Nima and Derezi\'{n}ski, Micha{\l} and Vuong, Thuy-Duong and Yang, Elizabeth},
  title =	{{Domain Sparsification of Discrete Distributions Using Entropic Independence}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.5},
  URN =		{urn:nbn:de:0030-drops-156013},
  doi =		{10.4230/LIPIcs.ITCS.2022.5},
  annote =	{Keywords: Domain Sparsification, Markov Chains, Sampling, Entropic Independence}
}
Document
High-Dimensional Expanders from Expanders

Authors: Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph G, adding self loops to G and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by [Jerrum et al., 2004].

Cite as

Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang. High-Dimensional Expanders from Expanders. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 12:1-12:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ITCS.2020.12,
  author =	{Liu, Siqi and Mohanty, Sidhanth and Yang, Elizabeth},
  title =	{{High-Dimensional Expanders from Expanders}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{12:1--12:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.12},
  URN =		{urn:nbn:de:0030-drops-116974},
  doi =		{10.4230/LIPIcs.ITCS.2020.12},
  annote =	{Keywords: High-Dimensional Expanders, Markov Chains}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail