Search Results

Documents authored by Ye, Christopher


Document
On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

Authors: Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Algorithms with predictions is a new research direction that leverages machine learned predictions for algorithm design. So far a plethora of recent works have incorporated predictions to improve on worst-case bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike online algorithms, the goal in dynamic data structures is to maintain the solution efficiently with every update. We investigate three natural models of prediction: (1) δ-accurate predictions where each predicted request matches the true request with probability δ, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are a permutation of the predicted requests. We give general reductions among the prediction models, showing that bounded delay is the strongest prediction model, followed by list-accurate, and δ-accurate. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that locally correctable dynamic problems have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, we show that locally reducible dynamic problems have time complexity that degrades gracefully with the quality of bounded delay predictions. We categorize problems with known OMv lower bounds accordingly and give several upper bounds in the delay model that show that our lower bounds are almost tight. We note that concurrent work by v.d.Brand et al. [SODA '24] and Liu and Srinivas [arXiv:2307.08890] independently study dynamic graph algorithms with predictions, but their work is mostly focused on showing upper bounds.

Cite as

Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye. On the Complexity of Algorithms with Predictions for Dynamic Graph Problems. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 62:1-62:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ITCS.2024.62,
  author =	{Henzinger, Monika and Saha, Barna and Seybold, Martin P. and Ye, Christopher},
  title =	{{On the Complexity of Algorithms with Predictions for Dynamic Graph Problems}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{62:1--62:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.62},
  URN =		{urn:nbn:de:0030-drops-195907},
  doi =		{10.4230/LIPIcs.ITCS.2024.62},
  annote =	{Keywords: Dynamic Graph Algorithms, Algorithms with Predictions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail