Search Results

Documents authored by Yirka, Justin


Document
The Entangled Quantum Polynomial Hierarchy Collapses

Authors: Sabee Grewal and Justin Yirka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We introduce the entangled quantum polynomial hierarchy, QEPH, as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove QEPH collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. As a consequence, QEPH = QRG(1), the class of problems having one-turn quantum refereed games, which is known to be contained in PSPACE. This is in contrast to the unentangled quantum polynomial hierarchy, QPH, which contains QMA(2). We also introduce DistributionQCPH, a generalization of the quantum-classical polynomial hierarchy QCPH where the provers send probability distributions over strings (instead of strings). We prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical probability) increases the computational power of these hierarchies. To prove this equality, we generalize a game-theoretic result of Lipton and Young (1994) which says that, without loss of generality, the provers can send uniform distributions over a polynomial-size support. We also prove the analogous result for the polynomial hierarchy, i.e., DistributionPH = PH. Finally, we show that PH and QCPH are contained in QPH, resolving an open question of Gharibian et al. (2022).

Cite as

Sabee Grewal and Justin Yirka. The Entangled Quantum Polynomial Hierarchy Collapses. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grewal_et_al:LIPIcs.CCC.2024.6,
  author =	{Grewal, Sabee and Yirka, Justin},
  title =	{{The Entangled Quantum Polynomial Hierarchy Collapses}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.6},
  URN =		{urn:nbn:de:0030-drops-204028},
  doi =		{10.4230/LIPIcs.CCC.2024.6},
  annote =	{Keywords: Polynomial hierarchy, Entangled proofs, Correlated proofs, Minimax}
}
Document
Oracle Complexity Classes and Local Measurements on Physical Hamiltonians

Authors: Sevag Gharibian, Stephen Piddock, and Justin Yirka

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
The canonical hard problems for NP and its quantum analogue, Quantum Merlin-Arthur (QMA), are MAX-k-SAT and the k-local Hamiltonian problem (k-LH), the quantum generalization of MAX-k-SAT, respectively. In recent years, however, an arguably even more physically motivated problem than k-LH has been formalized - the problem of simulating local measurements on ground states of local Hamiltonians (APX-SIM). Perhaps surprisingly, [Ambainis, CCC 2014] showed that APX-SIM is likely harder than QMA. Indeed, [Ambainis, CCC 2014] showed that APX-SIM is P^{QMA[log]}-complete, for P^{QMA[log]} the class of languages decidable by a P machine making a logarithmic number of adaptive queries to a QMA oracle. In this work, we show that APX-SIM is P^{QMA[log]}-complete even when restricted to physically motivated Hamiltonians, obtaining as intermediate steps a variety of related complexity-theoretic results. Specifically, we first give a sequence of results which together yield P^{QMA[log]}-hardness for APX-SIM on well-motivated Hamiltonians such as the 2D Heisenberg model: - We show that for NP, StoqMA, and QMA oracles, a logarithmic number of adaptive queries is equivalent to polynomially many parallel queries. Formally, P^{NP[log]}=P^{||NP}, P^{StoqMA[log]}=P^{||StoqMA}, and P^{QMA[log]}=P^{||QMA}. (The result for NP was previously shown using a different proof technique.) These equalities simplify the proofs of our subsequent results. - Next, we show that the hardness of APX-SIM is preserved under Hamiltonian simulations (à la [Cubitt, Montanaro, Piddock, 2017]) by studying a seemingly weaker problem, ∀-APX-SIM. As a byproduct, we obtain a full complexity classification of APX-SIM, showing it is complete for P, P^{||NP},P^{||StoqMA}, or P^{||QMA} depending on the Hamiltonians employed. - Leveraging the above, we show that APX-SIM is P^{QMA[log]}-complete for any family of Hamiltonians which can efficiently simulate spatially sparse Hamiltonians. This implies APX-SIM is P^{QMA[log]}-complete even on physically motivated models such as the 2D Heisenberg model. Our second focus considers 1D systems: We show that APX-SIM remains P^{QMA[log]}-complete even for local Hamiltonians on a 1D line of 8-dimensional qudits. This uses a number of ideas from above, along with replacing the "query Hamiltonian" of [Ambainis, CCC 2014] with a new "sifter" construction.

Cite as

Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle Complexity Classes and Local Measurements on Physical Hamiltonians. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 20:1-20:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.STACS.2020.20,
  author =	{Gharibian, Sevag and Piddock, Stephen and Yirka, Justin},
  title =	{{Oracle Complexity Classes and Local Measurements on Physical Hamiltonians}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{20:1--20:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.20},
  URN =		{urn:nbn:de:0030-drops-118818},
  doi =		{10.4230/LIPIcs.STACS.2020.20},
  annote =	{Keywords: Quantum Merlin Arthur (QMA), simulation of local measurement, local Hamiltonian, oracle complexity class, physical Hamiltonians}
}
Document
Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

Authors: Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
The polynomial-time hierarchy (PH) has proven to be a powerful tool for providing separations in computational complexity theory (modulo standard conjectures such as PH does not collapse). Here, we study whether two quantum generalizations of PH can similarly prove separations in the quantum setting. The first generalization, QCPH, uses classical proofs, and the second, QPH, uses quantum proofs. For the former, we show quantum variants of the Karp-Lipton theorem and Toda's theorem. For the latter, we place its third level, Q Sigma_3, into NEXP using the Ellipsoid Method for efficiently solving semidefinite programs. These results yield two implications for QMA(2), the variant of Quantum Merlin-Arthur (QMA) with two unentangled proofs, a complexity class whose characterization has proven difficult. First, if QCPH=QPH (i.e., alternating quantifiers are sufficiently powerful so as to make classical and quantum proofs "equivalent"), then QMA(2) is in the Counting Hierarchy (specifically, in P^{PP^{PP}}). Second, unless QMA(2)= Q Sigma_3 (i.e., alternating quantifiers do not help in the presence of "unentanglement"), QMA(2) is strictly contained in NEXP.

Cite as

Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka. Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2). In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 58:1-58:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.MFCS.2018.58,
  author =	{Gharibian, Sevag and Santha, Miklos and Sikora, Jamie and Sundaram, Aarthi and Yirka, Justin},
  title =	{{Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{58:1--58:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.58},
  URN =		{urn:nbn:de:0030-drops-96409},
  doi =		{10.4230/LIPIcs.MFCS.2018.58},
  annote =	{Keywords: Complexity Theory, Quantum Computing, Polynomial Hierarchy, Semidefinite Programming, QMA(2), Quantum Complexity}
}
Document
The Complexity of Simulating Local Measurements on Quantum Systems

Authors: Sevag Gharibian and Justin Yirka

Published in: LIPIcs, Volume 73, 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)


Abstract
An important task in quantum physics is the estimation of local quantities for ground states of local Hamiltonians. Recently, Ambainis defined the complexity class P^QMA[log], and motivated its study by showing that the physical task of estimating the expectation value of a local observable against the ground state of a local Hamiltonian is P^QMA[log]-complete. In this paper, we continue the study of P^QMA[log], obtaining the following results. The P^QMA[log]-completeness result of Ambainis requires O(log n)-local observ- ables and Hamiltonians. We show that simulating even a single qubit measurement on ground states of 5-local Hamiltonians is P^QMA[log]-complete, resolving an open question of Ambainis. We formalize the complexity theoretic study of estimating two-point correlation functions against ground states, and show that this task is similarly P^QMA[log]-complete. P^QMA[log] is thought of as "slightly harder" than QMA. We justify this formally by exploiting the hierarchical voting technique of Beigel, Hemachandra, and Wechsung to show P^QMA[log] \subseteq PP. This improves the containment QMA \subseteq PP from Kitaev and Watrous. A central theme of this work is the subtlety involved in the study of oracle classes in which the oracle solves a promise problem. In this vein, we identify a flaw in Ambainis' prior work regarding a P^UQMA[log]-hardness proof for estimating spectral gaps of local Hamiltonians. By introducing a "query validation" technique, we build on his prior work to obtain P^UQMA[log]-hardness for estimating spectral gaps under polynomial-time Turing reductions.

Cite as

Sevag Gharibian and Justin Yirka. The Complexity of Simulating Local Measurements on Quantum Systems. In 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 73, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.TQC.2017.2,
  author =	{Gharibian, Sevag and Yirka, Justin},
  title =	{{The Complexity of Simulating Local Measurements on Quantum Systems}},
  booktitle =	{12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-034-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{73},
  editor =	{Wilde, Mark M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2017.2},
  URN =		{urn:nbn:de:0030-drops-85776},
  doi =		{10.4230/LIPIcs.TQC.2017.2},
  annote =	{Keywords: Complexity theory, Quantum Merlin Arthur (QMA), local Hamiltonian, local measurement, spectral gap}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail