Search Results

Documents authored by Zettlemoyer, Luke S.


Document
Learning Probabilistic Relational Dynamics for Multiple Tasks

Authors: Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, and Leslie Pack Kaelbling

Published in: Dagstuhl Seminar Proceedings, Volume 7161, Probabilistic, Logical and Relational Learning - A Further Synthesis (2008)


Abstract
The ways in which an agent's actions affect the world can often be modeled compactly using a set of relational probabilistic planning rules. This extended abstract addresses the problem of learning such rule sets for multiple related tasks. We take a hierarchical Bayesian approach, in which the system learns a prior distribution over rule sets. We present a class of prior distributions parameterized by a rule set prototype that is stochastically modified to produce a task-specific rule set. We also describe a coordinate ascent algorithm that iteratively optimizes the task-specific rule sets and the prior distribution. Experiments using this algorithm show that transferring information from related tasks significantly reduces the amount of training data required to predict action effects in blocks-world domains.

Cite as

Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning Probabilistic Relational Dynamics for Multiple Tasks. In Probabilistic, Logical and Relational Learning - A Further Synthesis. Dagstuhl Seminar Proceedings, Volume 7161, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{deshpande_et_al:DagSemProc.07161.4,
  author =	{Deshpande, Ashwin and Milch, Brian and Zettlemoyer, Luke S. and Kaelbling, Leslie Pack},
  title =	{{Learning Probabilistic Relational Dynamics for Multiple Tasks}},
  booktitle =	{Probabilistic, Logical and Relational Learning - A Further Synthesis},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{7161},
  editor =	{Luc de Raedt and Thomas Dietterich and Lise Getoor and Kristian Kersting and Stephen H. Muggleton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07161.4},
  URN =		{urn:nbn:de:0030-drops-13846},
  doi =		{10.4230/DagSemProc.07161.4},
  annote =	{Keywords: Hierarchical Bayesian models, transfer learning, multi-task learning, probabilistic planning rules}
}
Document
Logical Particle Filtering

Authors: Luke S. Zettlemoyer, Hanna M. Pasula, and Leslie Pack Kaelbling

Published in: Dagstuhl Seminar Proceedings, Volume 7161, Probabilistic, Logical and Relational Learning - A Further Synthesis (2008)


Abstract
In this paper, we consider the problem of filtering in relational hidden Markov models. We present a compact representation for such models and an associated logical particle filtering algorithm. Each particle contains a logical formula that describes a set of states. The algorithm updates the formulae as new observations are received. Since a single particle tracks many states, this filter can be more accurate than a traditional particle filter in high dimensional state spaces, as we demonstrate in experiments.

Cite as

Luke S. Zettlemoyer, Hanna M. Pasula, and Leslie Pack Kaelbling. Logical Particle Filtering. In Probabilistic, Logical and Relational Learning - A Further Synthesis. Dagstuhl Seminar Proceedings, Volume 7161, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{zettlemoyer_et_al:DagSemProc.07161.5,
  author =	{Zettlemoyer, Luke S. and Pasula, Hanna M. and Pack Kaelbling, Leslie},
  title =	{{Logical Particle Filtering}},
  booktitle =	{Probabilistic, Logical and Relational Learning - A Further Synthesis},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{7161},
  editor =	{Luc de Raedt and Thomas Dietterich and Lise Getoor and Kristian Kersting and Stephen H. Muggleton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07161.5},
  URN =		{urn:nbn:de:0030-drops-13792},
  doi =		{10.4230/DagSemProc.07161.5},
  annote =	{Keywords: Particle filter, logical hidden Markov model}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail