Search Results

Documents authored by Zhu, Yu


Found 2 Possible Name Variants:

Zhu, Yu

Document
Extended Abstract
Best Before? Expiring Central Bank Digital Currency and Loss Recovery (Extended Abstract)

Authors: Charles M. Kahn, Maarten R.C. van Oordt, and Yu Zhu

Published in: OASIcs, Volume 97, 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)


Abstract
An important feature of physical cash payments is resilience, due to their independence of power outages or network coverage. Many central banks are exploring issuing digital cash substitutes with similar offline payment functionality. Such substitutes could incorporate novel features making them more desirable than physical cash. This paper considers introducing an expiry date for offline digital currency balances to automate personal loss recovery. We show this functionality could increase consumer demand for digital cash, with the time to expiration playing a key role. The optimal time to expiration should have short wait time to get lost money reimbursed but leave enough time for agents to deposit received offline balances. Setting the time to expiration a bit too long has minor impact on welfare but setting it too short dramatically reduce welfare. If the offline device provides information about past transactions to the central bank, the accuracy of loss recovery can be improved but welfare can decrease.

Cite as

Charles M. Kahn, Maarten R.C. van Oordt, and Yu Zhu. Best Before? Expiring Central Bank Digital Currency and Loss Recovery (Extended Abstract). In 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021). Open Access Series in Informatics (OASIcs), Volume 97, p. 7:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kahn_et_al:OASIcs.Tokenomics.2021.7,
  author =	{Kahn, Charles M. and van Oordt, Maarten R.C. and Zhu, Yu},
  title =	{{Best Before? Expiring Central Bank Digital Currency and Loss Recovery}},
  booktitle =	{3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)},
  pages =	{7:1--7:1},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-220-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{97},
  editor =	{Gramoli, Vincent and Halaburda, Hanna and Pass, Rafael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tokenomics.2021.7},
  URN =		{urn:nbn:de:0030-drops-159040},
  doi =		{10.4230/OASIcs.Tokenomics.2021.7},
  annote =	{Keywords: Central Bank Digital Currency, Design, Offline Payments, Operational Resilience, Financial Inclusion}
}

Zhu, Xiaoyun

Document
Model-driven Algorithms and Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041)

Authors: Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta Kwiatkowska

Published in: Dagstuhl Reports, Volume 5, Issue 1 (2015)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15041 "Model-driven Algorithms and Architectures for Self-Aware Computing Systems". The design of self-aware computing systems calls for an integrated interdisciplinary approach building on results from multiple areas of computer science and engineering, including software and systems engineering, systems modeling, simulation and analysis, autonomic and organic computing, machine learning and artificial intelligence, data center resource management, and so on. The Dagstuhl Seminar 15041 served as a platform to raise the awareness about the relevant research efforts in the respective research communities as well as existing synergies that can be exploited to advance the state-of-the-art, formulate a new research agenda that takes a broader view on the problem following an integrated and interdisciplinary approach, and establish collaborations between academia and industry.

Cite as

Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta Kwiatkowska. Model-driven Algorithms and Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041). In Dagstuhl Reports, Volume 5, Issue 1, pp. 164-196, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{kounev_et_al:DagRep.5.1.164,
  author =	{Kounev, Samuel and Zhu, Xiaoyun and Kephart, Jeffrey O. and Kwiatkowska, Marta},
  title =	{{Model-driven Algorithms and Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041)}},
  pages =	{164--196},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{1},
  editor =	{Kounev, Samuel and Zhu, Xiaoyun and Kephart, Jeffrey O. and Kwiatkowska, Marta},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.1.164},
  URN =		{urn:nbn:de:0030-drops-50385},
  doi =		{10.4230/DagRep.5.1.164},
  annote =	{Keywords: autonomic systems, self-adaptive, self-managing, model-driven, architecture-based, systems management, machine learning, feedback-based design}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail