Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Eyal Ackerman, Gábor Damásdi, Balázs Keszegh, Rom Pinchasi, and Rebeka Raffay. On the Number of Digons in Arrangements of Pairwise Intersecting Circles. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{ackerman_et_al:LIPIcs.SoCG.2024.3, author = {Ackerman, Eyal and Dam\'{a}sdi, G\'{a}bor and Keszegh, Bal\'{a}zs and Pinchasi, Rom and Raffay, Rebeka}, title = {{On the Number of Digons in Arrangements of Pairwise Intersecting Circles}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {3:1--3:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.3}, URN = {urn:nbn:de:0030-drops-199480}, doi = {10.4230/LIPIcs.SoCG.2024.3}, annote = {Keywords: Arrangement of pseudocircles, Counting touchings, Counting digons, Gr\"{u}nbaum’s conjecture} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Eyal Ackerman, Balázs Keszegh, and Günter Rote. An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{ackerman_et_al:LIPIcs.SoCG.2020.1, author = {Ackerman, Eyal and Keszegh, Bal\'{a}zs and Rote, G\"{u}nter}, title = {{An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {1:1--1:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.1}, URN = {urn:nbn:de:0030-drops-121591}, doi = {10.4230/LIPIcs.SoCG.2020.1}, annote = {Keywords: Simple polygon, Ramsey theory, combinatorial geometry} }
Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)
Eyal Ackerman, Balázs Keszegh, and Máté Vizer. Coloring Points with Respect to Squares. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{ackerman_et_al:LIPIcs.SoCG.2016.5, author = {Ackerman, Eyal and Keszegh, Bal\'{a}zs and Vizer, M\'{a}t\'{e}}, title = {{Coloring Points with Respect to Squares}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {5:1--5:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.5}, URN = {urn:nbn:de:0030-drops-58972}, doi = {10.4230/LIPIcs.SoCG.2016.5}, annote = {Keywords: Geometric hypergraph coloring, Polychromatic coloring, Homothets, Cover-decomposability} }
Feedback for Dagstuhl Publishing