5 Search Results for "Angiuli, Carlo"


Document
Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics

Authors: Jonathan Sterling, Daniel Gratzer, and Lars Birkedal

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We develop a denotational semantics for general reference types in an impredicative version of guarded homotopy type theory, an adaptation of synthetic guarded domain theory to Voevodsky’s univalent foundations. We observe for the first time the profound impact of univalence on the denotational semantics of mutable state. Univalence automatically ensures that all computations are invariant under symmetries of the heap - a bountiful source of program equivalences. In particular, even the most simplistic univalent model enjoys many new equations that do not hold when the same constructions are carried out in the universes of traditional set-level (extensional) type theory.

Cite as

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 47:1-47:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.CSL.2024.47,
  author =	{Sterling, Jonathan and Gratzer, Daniel and Birkedal, Lars},
  title =	{{Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{47:1--47:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.47},
  URN =		{urn:nbn:de:0030-drops-196901},
  doi =		{10.4230/LIPIcs.CSL.2024.47},
  annote =	{Keywords: univalent foundations, homotopy type theory, impredicative encodings, synthetic guarded domain theory, guarded recursion, higher-order store, reference types}
}
Document
Internal Parametricity for Cubical Type Theory

Authors: Evan Cavallo and Robert Harper

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity.

Cite as

Evan Cavallo and Robert Harper. Internal Parametricity for Cubical Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 13:1-13:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.13,
  author =	{Cavallo, Evan and Harper, Robert},
  title =	{{Internal Parametricity for Cubical Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.13},
  URN =		{urn:nbn:de:0030-drops-116564},
  doi =		{10.4230/LIPIcs.CSL.2020.13},
  annote =	{Keywords: parametricity, cubical type theory, higher inductive types}
}
Document
Unifying Cubical Models of Univalent Type Theory

Authors: Evan Cavallo, Anders Mörtberg, and Andrew W Swan

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure.

Cite as

Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 14:1-14:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.14,
  author =	{Cavallo, Evan and M\"{o}rtberg, Anders and Swan, Andrew W},
  title =	{{Unifying Cubical Models of Univalent Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.14},
  URN =		{urn:nbn:de:0030-drops-116578},
  doi =		{10.4230/LIPIcs.CSL.2020.14},
  annote =	{Keywords: Cubical Set Models, Cubical Type Theory, Homotopy Type Theory, Univalent Foundations}
}
Document
Cubical Syntax for Reflection-Free Extensional Equality

Authors: Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We contribute XTT, a cubical reconstruction of Observational Type Theory [Altenkirch et al., 2007] which extends Martin-Löf’s intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel extension of the logical families or categorical gluing argument inspired by Coquand and Shulman [Coquand, 2018; Shulman, 2015]: every closed element of boolean type is derivably equal to either true or false.

Cite as

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
  author =	{Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
  title =	{{Cubical Syntax for Reflection-Free Extensional Equality}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
  URN =		{urn:nbn:de:0030-drops-105387},
  doi =		{10.4230/LIPIcs.FSCD.2019.31},
  annote =	{Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}
Document
Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities

Authors: Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment validates Voevodsky's univalence axiom and includes a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cubical partial equivalence relations, and is the first two-level type theory to satisfy the canonicity property: all closed terms of boolean type evaluate to either true or false.

Cite as

Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 6:1-6:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{angiuli_et_al:LIPIcs.CSL.2018.6,
  author =	{Angiuli, Carlo and Hou (Favonia), Kuen-Bang and Harper, Robert},
  title =	{{Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.6},
  URN =		{urn:nbn:de:0030-drops-96734},
  doi =		{10.4230/LIPIcs.CSL.2018.6},
  annote =	{Keywords: Homotopy Type Theory, Two-Level Type Theory, Computational Type Theory, Cubical Sets}
}
  • Refine by Author
  • 2 Angiuli, Carlo
  • 2 Cavallo, Evan
  • 2 Gratzer, Daniel
  • 2 Harper, Robert
  • 2 Sterling, Jonathan
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Type theory
  • 2 Theory of computation → Denotational semantics
  • 1 Theory of computation → Algebraic semantics
  • 1 Theory of computation → Categorical semantics
  • 1 Theory of computation → Constructive mathematics
  • Show More...

  • Refine by Keyword
  • 2 Homotopy Type Theory
  • 2 cubical type theory
  • 1 Computational Type Theory
  • 1 Cubical Set Models
  • 1 Cubical Sets
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2020
  • 1 2018
  • 1 2019
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail