8 Search Results for "Anshu, Anurag"


Document
Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations

Authors: Anurag Anshu and Tony Metger

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [De Palma et al., 2022]; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form e^{ιH^{(p)}} ⋯ e^{ιH^{(1)}} |ψ₀⟩ for any n-qubit product state |ψ₀⟩, where each H^{(i)} can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates. An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level p = o(log log n), assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [Basso et al., 2022].

Cite as

Anurag Anshu and Tony Metger. Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 5:1-5:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.ITCS.2023.5,
  author =	{Anshu, Anurag and Metger, Tony},
  title =	{{Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{5:1--5:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.5},
  URN =		{urn:nbn:de:0030-drops-175085},
  doi =		{10.4230/LIPIcs.ITCS.2023.5},
  annote =	{Keywords: quantum computing, polynomial approximation, quantum optimization algorithm, QAOA, overlap gap property}
}
Document
Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians

Authors: Anurag Anshu and Chinmay Nirkhe

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The No Low-energy Trivial States (NLTS) conjecture of Freedman and Hastings [Freedman and Hastings, 2014] - which posits the existence of a local Hamiltonian with a super-constant quantum circuit lower bound on the complexity of all low-energy states - identifies a fundamental obstacle to the resolution of the quantum PCP conjecture. In this work, we provide new techniques, based on entropic and local indistinguishability arguments, that prove circuit lower bounds for all the low-energy states of local Hamiltonians arising from quantum error-correcting codes. For local Hamiltonians arising from nearly linear-rate or nearly linear-distance LDPC stabilizer codes, we prove super-constant circuit lower bounds for the complexity of all states of energy o(n). Such codes are known to exist and are not necessarily locally-testable, a property previously suspected to be essential for the NLTS conjecture. Curiously, such codes can also be constructed on a two-dimensional lattice, showing that low-depth states cannot accurately approximate the ground-energy even in physically relevant systems.

Cite as

Anurag Anshu and Chinmay Nirkhe. Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.ITCS.2022.6,
  author =	{Anshu, Anurag and Nirkhe, Chinmay},
  title =	{{Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.6},
  URN =		{urn:nbn:de:0030-drops-156023},
  doi =		{10.4230/LIPIcs.ITCS.2022.6},
  annote =	{Keywords: quantum pcps, local hamiltonians, error-correcting codes}
}
Document
On Query-To-Communication Lifting for Adversary Bounds

Authors: Anurag Anshu, Shalev Ben-David, and Srijita Kundu

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We investigate query-to-communication lifting theorems for models related to the quantum adversary bounds. Our results are as follows: 1) We show that the classical adversary bound lifts to a lower bound on randomized communication complexity with a constant-sized gadget. We also show that the classical adversary bound is a strictly stronger lower bound technique than the previously-lifted measure known as critical block sensitivity, making our lifting theorem one of the strongest lifting theorems for randomized communication complexity using a constant-sized gadget. 2) Turning to quantum models, we show a connection between lifting theorems for quantum adversary bounds and secure 2-party quantum computation in a certain "honest-but-curious" model. Under the assumption that such secure 2-party computation is impossible, we show that a simplified version of the positive-weight adversary bound lifts to a quantum communication lower bound using a constant-sized gadget. We also give an unconditional lifting theorem which lower bounds bounded-round quantum communication protocols. 3) Finally, we give some new results in query complexity. We show that the classical adversary and the positive-weight quantum adversary are quadratically related. We also show that the positive-weight quantum adversary is never larger than the square of the approximate degree. Both relations hold even for partial functions.

Cite as

Anurag Anshu, Shalev Ben-David, and Srijita Kundu. On Query-To-Communication Lifting for Adversary Bounds. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 30:1-30:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.CCC.2021.30,
  author =	{Anshu, Anurag and Ben-David, Shalev and Kundu, Srijita},
  title =	{{On Query-To-Communication Lifting for Adversary Bounds}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{30:1--30:39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.30},
  URN =		{urn:nbn:de:0030-drops-143042},
  doi =		{10.4230/LIPIcs.CCC.2021.30},
  annote =	{Keywords: Quantum computing, query complexity, communication complexity, lifting theorems, adversary method}
}
Document
Beyond Product State Approximations for a Quantum Analogue of Max Cut

Authors: Anurag Anshu, David Gosset, and Karen Morenz

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
We consider a computational problem where the goal is to approximate the maximum eigenvalue of a two-local Hamiltonian that describes Heisenberg interactions between qubits located at the vertices of a graph. Previous work has shed light on this problem’s approximability by product states. For any instance of this problem the maximum energy attained by a product state is lower bounded by the Max Cut of the graph and upper bounded by the standard Goemans-Williamson semidefinite programming relaxation of it. Gharibian and Parekh described an efficient classical approximation algorithm for this problem which outputs a product state with energy at least 0.498 times the maximum eigenvalue in the worst case, and observe that there exist instances where the best product state has energy 1/2 of optimal. We investigate approximation algorithms with performance exceeding this limitation which are based on optimizing over tensor products of few-qubit states and shallow quantum circuits. We provide an efficient classical algorithm which achieves an approximation ratio of at least 0.53 in the worst case. We also show that for any instance defined by a 3 or 4-regular graph, there is an efficiently computable shallow quantum circuit that prepares a state with energy larger than the best product state (larger even than its semidefinite programming relaxation).

Cite as

Anurag Anshu, David Gosset, and Karen Morenz. Beyond Product State Approximations for a Quantum Analogue of Max Cut. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.TQC.2020.7,
  author =	{Anshu, Anurag and Gosset, David and Morenz, Karen},
  title =	{{Beyond Product State Approximations for a Quantum Analogue of Max Cut}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.7},
  URN =		{urn:nbn:de:0030-drops-120660},
  doi =		{10.4230/LIPIcs.TQC.2020.7},
  annote =	{Keywords: Approximation algorithms, Quantum many-body systems}
}
Document
Quantum Algorithms for Classical Probability Distributions

Authors: Aleksandrs Belovs

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study their mutual relationships. Additionally, we prove that quantum query complexity of distinguishing two probability distributions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical query complexity for any pair of distributions. The results are obtained by using the adversary method for state-generating input oracles and for distinguishing probability distributions on input strings.

Cite as

Aleksandrs Belovs. Quantum Algorithms for Classical Probability Distributions. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 16:1-16:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{belovs:LIPIcs.ESA.2019.16,
  author =	{Belovs, Aleksandrs},
  title =	{{Quantum Algorithms for Classical Probability Distributions}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{16:1--16:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.16},
  URN =		{urn:nbn:de:0030-drops-111370},
  doi =		{10.4230/LIPIcs.ESA.2019.16},
  annote =	{Keywords: quantum query complexity, quantum adversary method, distinguishing probability distributions, Hellinger distance}
}
Document
A Composition Theorem for Randomized Query Complexity

Authors: Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, and Swagato Sanyal

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
Let the randomized query complexity of a relation for error probability epsilon be denoted by R_epsilon(). We prove that for any relation f contained in {0,1}^n times R and Boolean function g:{0,1}^m -> {0,1}, R_{1/3}(f o g^n) = Omega(R_{4/9}(f).R_{1/2-1/n^4}(g)), where f o g^n is the relation obtained by composing f and g. We also show using an XOR lemma that R_{1/3}(f o (g^{xor}_{O(log n)})^n) = Omega(log n . R_{4/9}(f) . R_{1/3}(g))$, where g^{xor}_{O(log n)} is the function obtained by composing the XOR function on O(log n) bits and g.

Cite as

Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query Complexity. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.FSTTCS.2017.10,
  author =	{Anshu, Anurag and Gavinsky, Dmitry and Jain, Rahul and Kundu, Srijita and Lee, Troy and Mukhopadhyay, Priyanka and Santha, Miklos and Sanyal, Swagato},
  title =	{{A Composition Theorem for Randomized Query Complexity}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.10},
  URN =		{urn:nbn:de:0030-drops-83967},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.10},
  annote =	{Keywords: Query algorithms and complexity, Decision trees, Composition theorem, XOR lemma, Hardness amplification}
}
Document
Separating Quantum Communication and Approximate Rank

Authors: Anurag Anshu, Shalev Ben-David, Ankit Garg, Rahul Jain, Robin Kothari, and Troy Lee

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
One of the best lower bound methods for the quantum communication complexity of a function H (with or without shared entanglement) is the logarithm of the approximate rank of the communication matrix of H. This measure is essentially equivalent to the approximate gamma-2 norm and generalized discrepancy, and subsumes several other lower bounds. All known lower bounds on quantum communication complexity in the general unbounded-round model can be shown via the logarithm of approximate rank, and it was an open problem to give any separation at all between quantum communication complexity and the logarithm of the approximate rank. In this work we provide the first such separation: We exhibit a total function H with quantum communication complexity almost quadratically larger than the logarithm of its approximate rank. We construct H using the communication lookup function framework of Anshu et al. (FOCS 2016) based on the cheat sheet framework of Aaronson et al. (STOC 2016). From a starting function F, this framework defines a new function H=F_G. Our main technical result is a lower bound on the quantum communication complexity of F_G in terms of the discrepancy of F, which we do via quantum information theoretic arguments. We show the upper bound on the approximate rank of F_G by relating it to the Boolean circuit size of the starting function F.

Cite as

Anurag Anshu, Shalev Ben-David, Ankit Garg, Rahul Jain, Robin Kothari, and Troy Lee. Separating Quantum Communication and Approximate Rank. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 24:1-24:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.CCC.2017.24,
  author =	{Anshu, Anurag and Ben-David, Shalev and Garg, Ankit and Jain, Rahul and Kothari, Robin and Lee, Troy},
  title =	{{Separating Quantum Communication and Approximate Rank}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{24:1--24:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.24},
  URN =		{urn:nbn:de:0030-drops-75303},
  doi =		{10.4230/LIPIcs.CCC.2017.24},
  annote =	{Keywords: Communication Complexity, Quantum Computing, Lower Bounds, logrank, Quantum Information}
}
Document
Lower Bound on Expected Communication Cost of Quantum Huffman Coding

Authors: Anurag Anshu, Ankit Garg, Aram W. Harrow, and Penghui Yao

Published in: LIPIcs, Volume 61, 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)


Abstract
Data compression is a fundamental problem in quantum and classical information theory. A typical version of the problem is that the sender Alice receives a (classical or quantum) state from some known ensemble and needs to transmit them to the receiver Bob with average error below some specified bound. We consider the case in which the message can have a variable length and the goal is to minimize its expected length. For classical messages this problem has a well-known solution given by Huffman coding. In this scheme, the expected length of the message is equal to the Shannon entropy of the source (with a constant additive factor) and the scheme succeeds with zero error. This is a single-shot result which implies the asymptotic result, viz. Shannon's source coding theorem, by encoding each state sequentially. For the quantum case, the asymptotic compression rate is given by the von-Neumann entropy. However, we show that there is no one-shot scheme which is able to match this rate, even if interactive communication is allowed. This is a relatively rare case in quantum information theory when the cost of a quantum task is significantly different than the classical analogue. Our result has implications for direct sum theorems in quantum communication complexity and one-shot formulations of Quantum Reverse Shannon theorem.

Cite as

Anurag Anshu, Ankit Garg, Aram W. Harrow, and Penghui Yao. Lower Bound on Expected Communication Cost of Quantum Huffman Coding. In 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 61, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.TQC.2016.3,
  author =	{Anshu, Anurag and Garg, Ankit and Harrow, Aram W. and Yao, Penghui},
  title =	{{Lower Bound on Expected Communication Cost of Quantum Huffman Coding}},
  booktitle =	{11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-019-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{61},
  editor =	{Broadbent, Anne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2016.3},
  URN =		{urn:nbn:de:0030-drops-66843},
  doi =		{10.4230/LIPIcs.TQC.2016.3},
  annote =	{Keywords: Quantum information, quantum communication, expected communica- tion cost, huffman coding}
}
  • Refine by Author
  • 7 Anshu, Anurag
  • 2 Ben-David, Shalev
  • 2 Garg, Ankit
  • 2 Jain, Rahul
  • 2 Kundu, Srijita
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Quantum complexity theory
  • 1 Theory of computation
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Quantum computation theory
  • Show More...

  • Refine by Keyword
  • 1 Approximation algorithms
  • 1 Communication Complexity
  • 1 Composition theorem
  • 1 Decision trees
  • 1 Hardness amplification
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2018
  • 1 2019
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail