2 Search Results for "Arnon-Friedman, Rotem"


Document
Noise-Tolerant Testing of High Entanglement of Formation

Authors: Rotem Arnon-Friedman and Henry Yuen

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In this work we construct tests that allow a classical user to certify high dimensional entanglement in uncharacterized and possibly noisy quantum devices. We present a family of non-local games {G_n} that for all n certify states with entanglement of formation Omega(n). These tests can be derived from any bipartite non-local game with a classical-quantum gap. Furthermore, our tests are noise-tolerant in the sense that fault tolerant technologies are not needed to play the games; entanglement distributed over noisy channels can pass with high probability, making our tests relevant for realistic experimental settings. This is in contrast to, e.g., results on self-testing of high dimensional entanglement, which are only relevant when the noise rate goes to zero with the system's size n. As a corollary of our result, we supply a lower-bound on the entanglement cost of any state achieving a quantum advantage in a bipartite non-local game. Our proof techniques heavily rely on ideas from the work on classical and quantum parallel repetition theorems.

Cite as

Rotem Arnon-Friedman and Henry Yuen. Noise-Tolerant Testing of High Entanglement of Formation. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 11:1-11:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{arnonfriedman_et_al:LIPIcs.ICALP.2018.11,
  author =	{Arnon-Friedman, Rotem and Yuen, Henry},
  title =	{{Noise-Tolerant Testing of High Entanglement of Formation}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{11:1--11:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.11},
  URN =		{urn:nbn:de:0030-drops-90157},
  doi =		{10.4230/LIPIcs.ICALP.2018.11},
  annote =	{Keywords: device independence, quantum games, entanglement testing, noise tolerance}
}
Document
Quantum-Proof Multi-Source Randomness Extractors in the Markov Model

Authors: Rotem Arnon-Friedman, Christopher Portmann, and Volkher B. Scholz

Published in: LIPIcs, Volume 61, 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)


Abstract
Randomness extractors, widely used in classical and quantum cryptography and other fields of computer science, e.g., derandomization, are functions which generate almost uniform randomness from weak sources of randomness. In the quantum setting one must take into account the quantum side information held by an adversary which might be used to break the security of the extractor. In the case of seeded extractors the presence of quantum side information has been extensively studied. For multi-source extractors one can easily see that high conditional min-entropy is not sufficient to guarantee security against arbitrary side information, even in the classical case. Hence, the interesting question is under which models of (both quantum and classical) side information multi-source extractors remain secure. In this work we suggest a natural model of side information, which we call the Markov model, and prove that any multi-source extractor remains secure in the presence of quantum side information of this type (albeit with weaker parameters). This improves on previous results in which more restricted models were considered or the security of only some types of extractors was shown.

Cite as

Rotem Arnon-Friedman, Christopher Portmann, and Volkher B. Scholz. Quantum-Proof Multi-Source Randomness Extractors in the Markov Model. In 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 61, pp. 2:1-2:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{arnonfriedman_et_al:LIPIcs.TQC.2016.2,
  author =	{Arnon-Friedman, Rotem and Portmann, Christopher and Scholz, Volkher B.},
  title =	{{Quantum-Proof Multi-Source Randomness Extractors in the Markov Model}},
  booktitle =	{11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)},
  pages =	{2:1--2:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-019-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{61},
  editor =	{Broadbent, Anne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2016.2},
  URN =		{urn:nbn:de:0030-drops-66830},
  doi =		{10.4230/LIPIcs.TQC.2016.2},
  annote =	{Keywords: Quantum proof randomness extractors, multisource extractors, device independent quantum cryptography}
}
  • Refine by Author
  • 2 Arnon-Friedman, Rotem
  • 1 Portmann, Christopher
  • 1 Scholz, Volkher B.
  • 1 Yuen, Henry

  • Refine by Classification
  • 1 Theory of computation → Quantum complexity theory

  • Refine by Keyword
  • 1 Quantum proof randomness extractors
  • 1 device independence
  • 1 device independent quantum cryptography
  • 1 entanglement testing
  • 1 multisource extractors
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail