2 Search Results for "Bergsträßer, Pascal"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
An Efficient Quantifier Elimination Procedure for Presburger Arithmetic

Authors: Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and Georg Zetzsche

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
All known quantifier elimination procedures for Presburger arithmetic require doubly exponential time for eliminating a single block of existentially quantified variables. It has even been claimed in the literature that this upper bound is tight. We observe that this claim is incorrect and develop, as the main result of this paper, a quantifier elimination procedure eliminating a block of existentially quantified variables in singly exponential time. As corollaries, we can establish the precise complexity of numerous problems. Examples include deciding (i) monadic decomposability for existential formulas, (ii) whether an existential formula defines a well-quasi ordering or, more generally, (iii) certain formulas of Presburger arithmetic with Ramsey quantifiers. Moreover, despite the exponential blowup, our procedure shows that under mild assumptions, even NP upper bounds for decision problems about quantifier-free formulas can be transferred to existential formulas. The technical basis of our results is a kind of small model property for parametric integer programming that generalizes the seminal results by von zur Gathen and Sieveking on small integer points in convex polytopes.

Cite as

Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and Georg Zetzsche. An Efficient Quantifier Elimination Procedure for Presburger Arithmetic. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 142:1-142:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haase_et_al:LIPIcs.ICALP.2024.142,
  author =	{Haase, Christoph and Krishna, Shankara Narayanan and Madnani, Khushraj and Mishra, Om Swostik and Zetzsche, Georg},
  title =	{{An Efficient Quantifier Elimination Procedure for Presburger Arithmetic}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{142:1--142:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.142},
  URN =		{urn:nbn:de:0030-drops-202856},
  doi =		{10.4230/LIPIcs.ICALP.2024.142},
  annote =	{Keywords: Presburger arithmetic, quantifier elimination, parametric integer programming, convex geometry}
}
Document
A Characterization of Wreath Products Where Knapsack Is Decidable

Authors: Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined for each finitely generated group G and takes as input group elements g_1,…,g_n,g ∈ G and asks whether there are x_1,…,x_n ≥ 0 with g_1^{x_1}⋯ g_n^{x_n} = g. We study the knapsack problem for wreath products G≀H of groups G and H. Our main result is a characterization of those wreath products G≀H for which the knapsack problem is decidable. The characterization is in terms of decidability properties of the indiviual factors G and H. To this end, we introduce two decision problems, the intersection knapsack problem and its restriction, the positive intersection knapsack problem. Moreover, we apply our main result to H₃(ℤ), the discrete Heisenberg group, and to Baumslag-Solitar groups BS(1,q) for q ≥ 1. First, we show that the knapsack problem is undecidable for G≀H₃(ℤ) for any G ≠ 1. This implies that for G ≠ 1 and for infinite and virtually nilpotent groups H, the knapsack problem for G≀H is decidable if and only if H is virtually abelian and solvability of systems of exponent equations is decidable for G. Second, we show that the knapsack problem is decidable for G≀BS(1,q) if and only if solvability of systems of exponent equations is decidable for G.

Cite as

Pascal Bergsträßer, Moses Ganardi, and Georg Zetzsche. A Characterization of Wreath Products Where Knapsack Is Decidable. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bergstraer_et_al:LIPIcs.STACS.2021.11,
  author =	{Bergstr\"{a}{\ss}er, Pascal and Ganardi, Moses and Zetzsche, Georg},
  title =	{{A Characterization of Wreath Products Where Knapsack Is Decidable}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.11},
  URN =		{urn:nbn:de:0030-drops-136566},
  doi =		{10.4230/LIPIcs.STACS.2021.11},
  annote =	{Keywords: knapsack, wreath products, decision problems in group theory, decidability, discrete Heisenberg group, Baumslag-Solitar groups}
}
  • Refine by Author
  • 2 Zetzsche, Georg
  • 1 Bergsträßer, Pascal
  • 1 Ganardi, Moses
  • 1 Haase, Christoph
  • 1 Krishna, Shankara Narayanan
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Logic
  • 1 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Theory and algorithms for application domains

  • Refine by Keyword
  • 1 Baumslag-Solitar groups
  • 1 Presburger arithmetic
  • 1 convex geometry
  • 1 decidability
  • 1 decision problems in group theory
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2024