3 Search Results for "Brown, Kenneth N."


Document
Efficient Optimal Control of Open Quantum Systems

Authors: Wenhao He, Tongyang Li, Xiantao Li, Zecheng Li, Chunhao Wang, and Ke Wang

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
The optimal control problem for open quantum systems can be formulated as a time-dependent Lindbladian that is parameterized by a number of time-dependent control variables. Given an observable and an initial state, the goal is to tune the control variables so that the expected value of some observable with respect to the final state is maximized. In this paper, we present algorithms for solving this optimal control problem efficiently, i.e., having a poly-logarithmic dependency on the system dimension, which is exponentially faster than best-known classical algorithms. Our algorithms are hybrid, consisting of both quantum and classical components. The quantum procedure simulates time-dependent Lindblad evolution that drives the initial state to the final state, and it also provides access to the gradients of the objective function via quantum gradient estimation. The classical procedure uses the gradient information to update the control variables. At the technical level, we provide the first (to the best of our knowledge) simulation algorithm for time-dependent Lindbladians with an 𝓁₁-norm dependence. As an alternative, we also present a simulation algorithm in the interaction picture to improve the algorithm for the cases where the time-independent component of a Lindbladian dominates the time-dependent part. On the classical side, we heavily adapt the state-of-the-art classical optimization analysis to interface with the quantum part of our algorithms. Both the quantum simulation techniques and the classical optimization analyses might be of independent interest.

Cite as

Wenhao He, Tongyang Li, Xiantao Li, Zecheng Li, Chunhao Wang, and Ke Wang. Efficient Optimal Control of Open Quantum Systems. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.TQC.2024.3,
  author =	{He, Wenhao and Li, Tongyang and Li, Xiantao and Li, Zecheng and Wang, Chunhao and Wang, Ke},
  title =	{{Efficient Optimal Control of Open Quantum Systems}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{3:1--3:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.3},
  URN =		{urn:nbn:de:0030-drops-206733},
  doi =		{10.4230/LIPIcs.TQC.2024.3},
  annote =	{Keywords: Quantum algorithm, quantum optimal control, Lindbladian simulation, accelerated gradient descent}
}
Document
Clausal Congruence Closure

Authors: Armin Biere, Katalin Fazekas, Mathias Fleury, and Nils Froleyks

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Many practical applications of satisfiability solving employ multiple steps to encode an original problem formulation into conjunctive normal form. Often circuits are used as intermediate representation before encoding those circuits into clausal form. These circuits however might contain redundant isomorphic sub-circuits. If blindly translated into clausal form, this redundancy is retained and increases solving time unless specific preprocessing algorithms are used. Furthermore, such redundant sub-formula structure might only emerge during solving and needs to be addressed by inprocessing. This paper presents a new approach which extracts gate information from the formula and applies congruence closure to match and eliminate redundant gates. Besides new algorithms for gate extraction, we also describe previous unpublished attempts to tackle this problem. Experiments focus on the important problem of combinational equivalence checking for hardware designs and show that our new approach yields a substantial gain in CNF solver performance.

Cite as

Armin Biere, Katalin Fazekas, Mathias Fleury, and Nils Froleyks. Clausal Congruence Closure. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 6:1-6:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biere_et_al:LIPIcs.SAT.2024.6,
  author =	{Biere, Armin and Fazekas, Katalin and Fleury, Mathias and Froleyks, Nils},
  title =	{{Clausal Congruence Closure}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{6:1--6:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.6},
  URN =		{urn:nbn:de:0030-drops-205287},
  doi =		{10.4230/LIPIcs.SAT.2024.6},
  annote =	{Keywords: Satisfiability Solving, Congruence Closure, Structural Hashing, SAT Sweeping, Conjunctive Normal Form, Combinational Equivalence Checking, Hardware Equivalence Checking}
}
Document
Positive and Negative Length-Bound Reachability Constraints

Authors: Luis Quesada and Kenneth N. Brown

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
In many application problems, including physical security and wildlife conservation, infrastructure must be configured to ensure or deny paths between specified locations. We model the problem as sub-graph design subject to constraints on paths and path lengths, and propose length-bound reachability constraints. Although reachability in graphs has been modelled before in constraint programming, the interaction of positive and negative reachability has not been studied in depth. We prove that deciding whether a set of positive and negative reachability constraints are satisfiable is NP complete. We show the effectiveness of our approach on decision problems, and also on optimisation problems. We compare our approach with existing constraint models, and we demonstrate significant improvements in runtime and solution costs, on a new problem set.

Cite as

Luis Quesada and Kenneth N. Brown. Positive and Negative Length-Bound Reachability Constraints. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{quesada_et_al:LIPIcs.CP.2021.46,
  author =	{Quesada, Luis and Brown, Kenneth N.},
  title =	{{Positive and Negative Length-Bound Reachability Constraints}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.46},
  URN =		{urn:nbn:de:0030-drops-153372},
  doi =		{10.4230/LIPIcs.CP.2021.46},
  annote =	{Keywords: Reachability Constraints, Graph Connectivity, Constraint Programming}
}
  • Refine by Author
  • 1 Biere, Armin
  • 1 Brown, Kenneth N.
  • 1 Fazekas, Katalin
  • 1 Fleury, Mathias
  • 1 Froleyks, Nils
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Automated reasoning
  • 1 Theory of computation → Constraint and logic programming
  • 1 Theory of computation → Quantum computation theory

  • Refine by Keyword
  • 1 Combinational Equivalence Checking
  • 1 Congruence Closure
  • 1 Conjunctive Normal Form
  • 1 Constraint Programming
  • 1 Graph Connectivity
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021