Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)
Jean-Daniel Boissonnat and Kunal Dutta. A Euclidean Embedding for Computing Persistent Homology with Gaussian Kernels. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{boissonnat_et_al:LIPIcs.ESA.2024.29, author = {Boissonnat, Jean-Daniel and Dutta, Kunal}, title = {{A Euclidean Embedding for Computing Persistent Homology with Gaussian Kernels}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {29:1--29:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.29}, URN = {urn:nbn:de:0030-drops-211009}, doi = {10.4230/LIPIcs.ESA.2024.29}, annote = {Keywords: Persistent homology, Gaussian kernels, Random Fourier Features, Euclidean embedding} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 54:1-54:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{kim_et_al:LIPIcs.SoCG.2020.54, author = {Kim, Jisu and Shin, Jaehyeok and Chazal, Fr\'{e}d\'{e}ric and Rinaldo, Alessandro and Wasserman, Larry}, title = {{Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {54:1--54:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.54}, URN = {urn:nbn:de:0030-drops-122129}, doi = {10.4230/LIPIcs.SoCG.2020.54}, annote = {Keywords: Computational topology, Homotopy reconstruction, Homotopy Equivalence, Vietoris-Rips complex, \v{C}ech complex, Reach, \mu-reach, Nerve Theorem, Offset, Double offset, Consistency} }
Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)
Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage, and Yuhei Umeda. DTM-Based Filtrations. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{anai_et_al:LIPIcs.SoCG.2019.58, author = {Anai, Hirokazu and Chazal, Fr\'{e}d\'{e}ric and Glisse, Marc and Ike, Yuichi and Inakoshi, Hiroya and Tinarrage, Rapha\"{e}l and Umeda, Yuhei}, title = {{DTM-Based Filtrations}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {58:1--58:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.58}, URN = {urn:nbn:de:0030-drops-104623}, doi = {10.4230/LIPIcs.SoCG.2019.58}, annote = {Keywords: Topological Data Analysis, Persistent homology} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Frédéric Chazal and Vincent Divol. The Density of Expected Persistence Diagrams and its Kernel Based Estimation. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{chazal_et_al:LIPIcs.SoCG.2018.26, author = {Chazal, Fr\'{e}d\'{e}ric and Divol, Vincent}, title = {{The Density of Expected Persistence Diagrams and its Kernel Based Estimation}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {26:1--26:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.26}, URN = {urn:nbn:de:0030-drops-87395}, doi = {10.4230/LIPIcs.SoCG.2018.26}, annote = {Keywords: topological data analysis, persistence diagrams, subanalytic geometry} }
Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)
Mickaël Buchet, Frédéric Chazal, Tamal K. Dey, Fengtao Fan, Steve Y. Oudot, and Yusu Wang. Topological Analysis of Scalar Fields with Outliers. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 827-841, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
@InProceedings{buchet_et_al:LIPIcs.SOCG.2015.827, author = {Buchet, Micka\"{e}l and Chazal, Fr\'{e}d\'{e}ric and Dey, Tamal K. and Fan, Fengtao and Oudot, Steve Y. and Wang, Yusu}, title = {{Topological Analysis of Scalar Fields with Outliers}}, booktitle = {31st International Symposium on Computational Geometry (SoCG 2015)}, pages = {827--841}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-83-5}, ISSN = {1868-8969}, year = {2015}, volume = {34}, editor = {Arge, Lars and Pach, J\'{a}nos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.827}, URN = {urn:nbn:de:0030-drops-51052}, doi = {10.4230/LIPIcs.SOCG.2015.827}, annote = {Keywords: Persistent Homology, Topological Data Analysis, Scalar Field Analysis, Nested Rips Filtration, Distance to a Measure} }
Feedback for Dagstuhl Publishing