3 Search Results for "Dahlgaard, Søren"


Document
Constructing Light Spanners Deterministically in Near-Linear Time

Authors: Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon')) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1). To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest.

Cite as

Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Constructing Light Spanners Deterministically in Near-Linear Time. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alstrup_et_al:LIPIcs.ESA.2019.4,
  author =	{Alstrup, Stephen and Dahlgaard, S{\o}ren and Filtser, Arnold and St\"{o}ckel, Morten and Wulff-Nilsen, Christian},
  title =	{{Constructing Light Spanners Deterministically in Near-Linear Time}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.4},
  URN =		{urn:nbn:de:0030-drops-111255},
  doi =		{10.4230/LIPIcs.ESA.2019.4},
  annote =	{Keywords: Spanners, Light Spanners, Efficient Construction, Deterministic Dynamic Distance Oracle}
}
Document
On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

Authors: Søren Dahlgaard

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
Conditional lower bounds for dynamic graph problems has received a great deal of attention in recent years. While many results are now known for the fully-dynamic case and such bounds often imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove amortized bounds for incremental and decremental algorithms. In this paper we consider partially dynamic versions of three classic problems in graph theory. Based on popular conjectures we show that: - No algorithm with amortized update time O(n^{1-epsilon}) exists for incremental or decremental maximum cardinality bipartite matching. This significantly improves on the O(m^{1/2-epsilon}) bound for sparse graphs of Henzinger et al. [STOC'15] and O(n^{1/3-epsilon}) bound of Kopelowitz, Pettie and Porat. Our linear bound also appears more natural. In addition, the result we present separates the node-addition model from the edge insertion model, as an algorithm with total update time O(m*sqrt(n)) exists for the former by Bosek et al. [FOCS'14]. - No algorithm with amortized update time O(m^{1-epsilon}) exists for incremental or decremental maximum flow in directed and weighted sparse graphs. No such lower bound was known for partially dynamic maximum flow previously. Furthermore no algorithm with amortized update time O(n^{1-epsilon}) exists for directed and unweighted graphs or undirected and weighted graphs. - No algorithm with amortized update time O(n^{1/2-epsilon}) exists for incremental or decremental (4/3 - epsilon')-approximating the diameter of an unweighted graph. We also show a slightly stronger bound if node additions are allowed. The result is then extended to the static case, where we show that no O((n*sqrt(m))^{1-epsilon}) algorithm exists. We also extend the result to the case when an additive error is allowed in the approximation. While our bounds are weaker than the already known bounds of Roditty and Vassilevska Williams [STOC'13], it is based on a weaker conjecture of Abboud et al. [STOC'15] and is the first known reduction from the 3SUM and APSP problems to diameter. Showing an equivalence between APSP and diameter is a major open problem in this area (Abboud et al. [SODA'15]), and thus showing even a weak connection in this direction is of interest.

Cite as

Søren Dahlgaard. On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dahlgaard:LIPIcs.ICALP.2016.48,
  author =	{Dahlgaard, S{\o}ren},
  title =	{{On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.48},
  URN =		{urn:nbn:de:0030-drops-63289},
  doi =		{10.4230/LIPIcs.ICALP.2016.48},
  annote =	{Keywords: Conditional lower bounds, Maximum cardinality matching, Diameter in graphs, Hardness in P, Partially dynamic problems, Maximum flow}
}
Document
Sublinear Distance Labeling

Authors: Stephen Alstrup, Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Ely Porat

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
A distance labeling scheme labels the n nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A D-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least D from each other. In this paper we consider distance labeling schemes for the classical case of unweighted and undirected graphs. We present a O(n/D * log^2(D)) bit D-preserving distance labeling scheme, improving the previous bound by Bollobás et al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Omega(n/D). With our D-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate r-additive labeling schemes, that return distances within an additive error of r we show a scheme of size O(n/r * polylog(r*log(n))/log(n)) for r >= 2. This improves on the current best bound of O(n/r) by Alstrup et al. [SODA 2016] for sub-polynomial r, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2.

Cite as

Stephen Alstrup, Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Ely Porat. Sublinear Distance Labeling. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{alstrup_et_al:LIPIcs.ESA.2016.5,
  author =	{Alstrup, Stephen and Dahlgaard, S{\o}ren and Knudsen, Mathias B{\ae}k Tejs and Porat, Ely},
  title =	{{Sublinear Distance Labeling}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.5},
  URN =		{urn:nbn:de:0030-drops-63479},
  doi =		{10.4230/LIPIcs.ESA.2016.5},
  annote =	{Keywords: Graph labeling schemes, Distance labeling, Graph theory, Sparse graphs}
}
  • Refine by Author
  • 3 Dahlgaard, Søren
  • 2 Alstrup, Stephen
  • 1 Filtser, Arnold
  • 1 Knudsen, Mathias Bæk Tejs
  • 1 Porat, Ely
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation → Sparsification and spanners

  • Refine by Keyword
  • 1 Conditional lower bounds
  • 1 Deterministic Dynamic Distance Oracle
  • 1 Diameter in graphs
  • 1 Distance labeling
  • 1 Efficient Construction
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2016
  • 1 2019