1 Search Results for "Dwivedi, Prateek"


Document
Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

Authors: Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ^[k] Π Σ ∧) and sum-product-of-constant-degree-polynomials (Σ^[k] Π Σ Π^[δ]), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha,Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for Σ^[k] Π Σ ∧. Further, we give the first quasipolynomial time blackbox PIT for both Σ^[k] Π Σ ∧ and Σ^[k] Π Σ Π^[δ]. No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.

Cite as

Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 11:1-11:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.CCC.2021.11,
  author =	{Dutta, Pranjal and Dwivedi, Prateek and Saxena, Nitin},
  title =	{{Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{11:1--11:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.11},
  URN =		{urn:nbn:de:0030-drops-142857},
  doi =		{10.4230/LIPIcs.CCC.2021.11},
  annote =	{Keywords: Polynomial identity testing, hitting set, depth-4 circuits}
}
  • Refine by Author
  • 1 Dutta, Pranjal
  • 1 Dwivedi, Prateek
  • 1 Saxena, Nitin

  • Refine by Classification
  • 1 Theory of computation → Algebraic complexity theory

  • Refine by Keyword
  • 1 Polynomial identity testing
  • 1 depth-4 circuits
  • 1 hitting set

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail