13 Search Results for "Fahrenberg, Uli"


Issue

Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, 2022

LITES, Volume 8, Issue 2

Editors: Alessandro Abate, Uli Fahrenberg, and Martin Fränzle

Special Issue on Distributed Hybrid Systems

Document
Introduction
Introduction to the Special Issue on Distributed Hybrid Systems

Authors: Alessandro Abate, Uli Fahrenberg, and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
This special issue contains seven papers within the broad subject of Distributed Hybrid Systems, that is, systems combining hybrid discrete-continuous state spaces with elements of concurrency and logical or spatial distribution. It follows up on several workshops on the same theme which were held between 2017 and 2019 and organized by the editors of this volume. The first of these workshops was held in Aalborg, Denmark, in August 2017 and associated with the MFCS conference. It featured invited talks by Alessandro Abate, Martin Fränzle, Kim G. Larsen, Martin Raussen, and Rafael Wisniewski. The second workshop was held in Palaiseau, France, in July 2018, with invited talks by Luc Jaulin, Thao Dang, Lisbeth Fajstrup, Emmanuel Ledinot, and André Platzer. The third workshop was held in Amsterdam, The Netherlands, in August 2019, associated with the CONCUR conference. It featured a special theme on distributed robotics and had invited talks by Majid Zamani, Hervé de Forges, and Xavier Urbain. The vision and purpose of the DHS workshops was to connect researchers working in real-time systems, hybrid systems, control theory, formal verification, distributed computing, and concurrency theory, in order to advance the subject of distributed hybrid systems. Such systems are abundant and often safety-critical, but ensuring their correct functioning can in general be challenging. The investigation of their dynamics by analysis tools from the aforementioned domains remains fragmentary, providing the rationale behind the workshops: it was conceived that convergence and interaction of theories, methods, and tools from these different areas was needed in order to advance the subject.

Cite as

LITES, Volume 8, Issue 2: Special Issue on Distributed Hybrid Systems, pp. 0:i-0:iii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{abate_et_al:LITES.8.2.0,
  author =	{Abate, Alessandro and Fahrenberg, Uli and Fr\"{a}nzle, Martin},
  title =	{{Introduction to the Special Issue on Distributed Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{00:1--00:3},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.0},
  doi =		{10.4230/LITES.8.2.0},
  annote =	{Keywords: Distributed hybrid systems}
}
Document
Higher-Dimensional Timed and Hybrid Automata

Authors: Uli Fahrenberg

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We introduce a new formalism of higher-dimensional timed automata, based on Pratt and van Glabbeek’s higher-dimensional automata and Alur and Dill’s timed automata. We prove that their reachability is PSPACE-complete and can be decided using zone-based algorithms. We also extend the setting to higher-dimensional hybrid automata.The interest of our formalism is in modeling systems which exhibit both real-time behavior and concurrency. Other existing formalisms for real-time modeling identify concurrency and interleaving, which, as we shall argue, is problematic.

Cite as

Uli Fahrenberg. Higher-Dimensional Timed and Hybrid Automata. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 03:1-03:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{fahrenberg:LITES.8.2.3,
  author =	{Fahrenberg, Uli},
  title =	{{Higher-Dimensional Timed and Hybrid Automata}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:16},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.3},
  doi =		{10.4230/LITES.8.2.3},
  annote =	{Keywords: timed automaton, higher-dimensional automaton, precubical set, real time, non-interleaving concurrency, hybrid automaton}
}
Document
A Kleene Theorem for Higher-Dimensional Automata

Authors: Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We prove a Kleene theorem for higher-dimensional automata (HDAs). It states that the languages they recognise are precisely the rational subsumption-closed sets of interval pomsets. The rational operations include a gluing composition, for which we equip pomsets with interfaces. For our proof, we introduce HDAs with interfaces as presheaves over labelled precube categories and use tools inspired by algebraic topology, such as cylinders and (co)fibrations. HDAs are a general model of non-interleaving concurrency, which subsumes many other models in this field. Interval orders are used as models for concurrent or distributed systems where events extend in time. Our tools and techniques may therefore yield templates for Kleene theorems in various models and applications.

Cite as

Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. A Kleene Theorem for Higher-Dimensional Automata. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 29:1-29:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fahrenberg_et_al:LIPIcs.CONCUR.2022.29,
  author =	{Fahrenberg, Uli and Johansen, Christian and Struth, Georg and Ziemia\'{n}ski, Krzysztof},
  title =	{{A Kleene Theorem for Higher-Dimensional Automata}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.29},
  URN =		{urn:nbn:de:0030-drops-170925},
  doi =		{10.4230/LIPIcs.CONCUR.2022.29},
  annote =	{Keywords: higher-dimensional automata, interval posets, Kleene theorem, concurrency theory, labelled precube categories}
}
Document
Synthesis from Weighted Specifications with Partial Domains over Finite Words

Authors: Emmanuel Filiot, Christof Löding, and Sarah Winter

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In this paper, we investigate the synthesis problem of terminating reactive systems from quantitative specifications. Such systems are modeled as finite transducers whose executions are represented as finite words in (I × O)^*, where I, O are finite sets of input and output symbols, respectively. A weighted specification S assigns a rational value (or -∞) to words in (I × O)^*, and we consider three kinds of objectives for synthesis, namely threshold objectives where the system’s executions are required to be above some given threshold, best-value and approximate objectives where the system is required to perform as best as it can by providing output symbols that yield the best value and ε-best value respectively w.r.t. S. We establish a landscape of decidability results for these three objectives and weighted specifications with partial domain over finite words given by deterministic weighted automata equipped with sum, discounted-sum and average measures. The resulting objectives are not regular in general and we develop an infinite game framework to solve the corresponding synthesis problems, namely the class of (weighted) critical prefix games.

Cite as

Emmanuel Filiot, Christof Löding, and Sarah Winter. Synthesis from Weighted Specifications with Partial Domains over Finite Words. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{filiot_et_al:LIPIcs.FSTTCS.2020.46,
  author =	{Filiot, Emmanuel and L\"{o}ding, Christof and Winter, Sarah},
  title =	{{Synthesis from Weighted Specifications with Partial Domains over Finite Words}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.46},
  URN =		{urn:nbn:de:0030-drops-132874},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.46},
  annote =	{Keywords: synthesis, weighted games, weighted automata on finite words}
}
Document
Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions

Authors: Paul Wild and Lutz Schröder

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Behavioural distances provide a fine-grained measure of equivalence in systems involving quantitative data, such as probabilistic, fuzzy, or metric systems. Like in the classical setting of crisp bisimulation-type equivalences, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy bisimulations that need not themselves be (pseudo-)metrics, in analogy to classical bisimulations (which need not be equivalence relations). The known instances of generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For non-expansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic.

Cite as

Paul Wild and Lutz Schröder. Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 27:1-27:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{wild_et_al:LIPIcs.CONCUR.2020.27,
  author =	{Wild, Paul and Schr\"{o}der, Lutz},
  title =	{{Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.27},
  URN =		{urn:nbn:de:0030-drops-128394},
  doi =		{10.4230/LIPIcs.CONCUR.2020.27},
  annote =	{Keywords: Modal logic, behavioural distance, coalgebra, bisimulation, lax extension}
}
Document
Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum

Authors: Ulrich Dorsch, Stefan Milius, and Lutz Schröder

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
State-based models of concurrent systems are traditionally considered under a variety of notions of process equivalence. In the case of labelled transition systems, these equivalences range from trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time - branching time spectrum. A combination of universal coalgebra and graded monads provides a generic framework in which the semantics of concurrency can be parametrized both over the branching type of the underlying transition systems and over the granularity of process equivalence. We show in the present paper that this framework of graded semantics does subsume the most important equivalences from the linear time - branching time spectrum. An important feature of graded semantics is that it allows for the principled extraction of characteristic modal logics. We have established invariance of these graded logics under the given graded semantics in earlier work; in the present paper, we extend the logical framework with an explicit propositional layer and provide a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser notions of process equivalence. We extract graded logics for a range of graded semantics on labelled transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based on our generic criterion.

Cite as

Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dorsch_et_al:LIPIcs.CONCUR.2019.36,
  author =	{Dorsch, Ulrich and Milius, Stefan and Schr\"{o}der, Lutz},
  title =	{{Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.36},
  URN =		{urn:nbn:de:0030-drops-109384},
  doi =		{10.4230/LIPIcs.CONCUR.2019.36},
  annote =	{Keywords: Linear Time, Branching Time, Monads, System Equivalences, Modal Logics, Expressiveness}
}
Document
Energy Mean-Payoff Games

Authors: Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
In this paper, we study one-player and two-player energy mean-payoff games. Energy mean-payoff games are games of infinite duration played on a finite graph with edges labeled by 2-dimensional weight vectors. The objective of the first player (the protagonist) is to satisfy an energy objective on the first dimension and a mean-payoff objective on the second dimension. We show that optimal strategies for the first player may require infinite memory while optimal strategies for the second player (the antagonist) do not require memory. In the one-player case (where only the first player has choices), the problem of deciding who is the winner can be solved in polynomial time while for the two-player case we show co-NP membership and we give effective constructions for the infinite-memory optimal strategies of the protagonist.

Cite as

Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin. Energy Mean-Payoff Games. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 21:1-21:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2019.21,
  author =	{Bruy\`{e}re, V\'{e}ronique and Hautem, Quentin and Randour, Mickael and Raskin, Jean-Fran\c{c}ois},
  title =	{{Energy Mean-Payoff Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{21:1--21:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.21},
  URN =		{urn:nbn:de:0030-drops-109239},
  doi =		{10.4230/LIPIcs.CONCUR.2019.21},
  annote =	{Keywords: two-player zero-sum games played on graphs, energy and mean-payoff objectives, complexity study and construction of optimal strategies}
}
Document
An omega-Algebra for Real-Time Energy Problems

Authors: David Cachera, Uli Fahrenberg, and Axel Legay

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
We develop a *-continuous Kleene omega-algebra of real-time energy functions. Together with corresponding automata, these can be used to model systems which can consume and regain energy (or other types of resources) depending on available time. Using recent results on *-continuous Kleene omega-algebras and computability of certain manipulations on real-time energy functions, it follows that reachability and Büchi acceptance in real-time energy automata can be decided in a static way which only involves manipulations of real-time energy functions.

Cite as

David Cachera, Uli Fahrenberg, and Axel Legay. An omega-Algebra for Real-Time Energy Problems. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 394-407, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{cachera_et_al:LIPIcs.FSTTCS.2015.394,
  author =	{Cachera, David and Fahrenberg, Uli and Legay, Axel},
  title =	{{An omega-Algebra for Real-Time Energy Problems}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{394--407},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.394},
  URN =		{urn:nbn:de:0030-drops-56511},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.394},
  annote =	{Keywords: Energy problem, Real time, Star-continuous Kleene algebra}
}
Document
Partial Higher-dimensional Automata

Authors: Uli Fahrenberg and Axel Legay

Published in: LIPIcs, Volume 35, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)


Abstract
We propose a generalization of higher-dimensional automata, partial HDA. Unlike HDA, and also extending event structures and Petri nets, partial HDA can model phenomena such as priorities or the disabling of an event by another event. Using open maps and unfoldings, we introduce a natural notion of (higher-dimensional) bisimilarity for partial HDA and relate it to history-preserving bisimilarity and split bisimilarity. Higher-dimensional bisimilarity has a game characterization and is decidable in polynomial time.

Cite as

Uli Fahrenberg and Axel Legay. Partial Higher-dimensional Automata. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 101-115, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{fahrenberg_et_al:LIPIcs.CALCO.2015.101,
  author =	{Fahrenberg, Uli and Legay, Axel},
  title =	{{Partial Higher-dimensional Automata}},
  booktitle =	{6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)},
  pages =	{101--115},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-84-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{35},
  editor =	{Moss, Lawrence S. and Sobocinski, Pawel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2015.101},
  URN =		{urn:nbn:de:0030-drops-55295},
  doi =		{10.4230/LIPIcs.CALCO.2015.101},
  annote =	{Keywords: higher-dimensional automata, bisimulation}
}
Document
Towards Trace Metrics via Functor Lifting

Authors: Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König

Published in: LIPIcs, Volume 35, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)


Abstract
We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First, we generalize a technique for systematically lifting functors from the category Set of sets to the category PMet of pseudometric spaces, by identifying conditions under which also natural transformations, monads and distributive laws can be lifted. By exploiting some recent work on an abstract determinization, these results enable the derivation of trace metrics starting from coalgebras in Set. More precisely, for a coalgebra in Set we determinize it, thus obtaining a coalgebra in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can equip the final coalgebra with a behavioral distance. The trace distance between two states of the original coalgebra is the distance between their images in the determinized coalgebra through the unit of the monad. We show how our framework applies to nondeterministic automata and probabilistic automata.

Cite as

Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Towards Trace Metrics via Functor Lifting. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 35-49, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{baldan_et_al:LIPIcs.CALCO.2015.35,
  author =	{Baldan, Paolo and Bonchi, Filippo and Kerstan, Henning and K\"{o}nig, Barbara},
  title =	{{Towards Trace Metrics via Functor Lifting}},
  booktitle =	{6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)},
  pages =	{35--49},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-84-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{35},
  editor =	{Moss, Lawrence S. and Sobocinski, Pawel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2015.35},
  URN =		{urn:nbn:de:0030-drops-55254},
  doi =		{10.4230/LIPIcs.CALCO.2015.35},
  annote =	{Keywords: trace metric, monad lifting, pseudometric, coalgebra}
}
Document
The Quantitative Linear-Time--Branching-Time Spectrum

Authors: Uli Fahrenberg, Axel Legay, and Claus Thrane

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
We present a distance-agnostic approach to quantitative verification. Taking as input an unspecified distance on system traces, or executions, we develop a game-based framework which allows us to define a spectrum of different interesting system distances corresponding to the given trace distance. Thus we extend the classic linear-time--branching-time spectrum to a quantitative setting, parametrized by trace distance. We also provide fixed-point characterizations of all system distances, and we prove a general transfer principle which allows us to transfer counterexamples from the qualitative to the quantitative setting,showing that all system distances are mutually topologically inequivalent.

Cite as

Uli Fahrenberg, Axel Legay, and Claus Thrane. The Quantitative Linear-Time--Branching-Time Spectrum. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 103-114, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{fahrenberg_et_al:LIPIcs.FSTTCS.2011.103,
  author =	{Fahrenberg, Uli and Legay, Axel and Thrane, Claus},
  title =	{{The Quantitative Linear-Time--Branching-Time Spectrum}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{103--114},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.103},
  URN =		{urn:nbn:de:0030-drops-33324},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.103},
  annote =	{Keywords: Quantitative verification, System distance, Distance hierarchy, Linear time, Branching time}
}
Document
A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic

Authors: Kim G. Larsen, Uli Fahrenberg, and Claus Thrane

Published in: OASIcs, Volume 13, Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'09) (2009)


Abstract
We extend the usual notion of Kripke Structures with a weighted transition relation, and generalize the usual Boolean satisfaction relation of CTL to a map which assigns to states and temporal formulae a real-valued distance describing the degree of satisfaction. We describe a general approach to obtaining quantitative interpretations for a generic extension of the CTL syntax, and show that, for one such interpretation, the logic is both adequate and expressive with respect to quantitative bisimulation.

Cite as

Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic. In Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'09). Open Access Series in Informatics (OASIcs), Volume 13, pp. 10-17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{larsen_et_al:OASIcs:2009:DROPS.MEMICS.2009.2345,
  author =	{Larsen, Kim G. and Fahrenberg, Uli and Thrane, Claus},
  title =	{{A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic}},
  booktitle =	{Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'09)},
  pages =	{10--17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-15-6},
  ISSN =	{2190-6807},
  year =	{2009},
  volume =	{13},
  editor =	{Hlinen\'{y}, Petr and Maty\'{a}\v{s}, V\'{a}clav and Vojnar, Tom\'{a}\v{s}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DROPS.MEMICS.2009.2345},
  URN =		{urn:nbn:de:0030-drops-23454},
  doi =		{10.4230/DROPS.MEMICS.2009.2345},
  annote =	{Keywords: Quantitative analysis, Kripke structures, characteristic formulae, bisimulation distance, weighted CTL}
}
  • Refine by Author
  • 7 Fahrenberg, Uli
  • 3 Legay, Axel
  • 2 Schröder, Lutz
  • 2 Thrane, Claus
  • 1 Abate, Alessandro
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Concurrency
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Modal and temporal logics
  • 1 Software and its engineering → Formal methods
  • 1 Theory of computation → Automata extensions
  • Show More...

  • Refine by Keyword
  • 2 bisimulation
  • 2 coalgebra
  • 2 higher-dimensional automata
  • 1 Branching Time
  • 1 Branching time
  • Show More...

  • Refine by Type
  • 12 document
  • 1 issue

  • Refine by Publication Year
  • 4 2022
  • 3 2015
  • 2 2019
  • 2 2020
  • 1 2009
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail