3 Search Results for "Fischer, Miriam"


Document
Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional

Authors: Mikkel Abrahamsen, Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, and László Kozma

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the online sorting problem, n items are revealed one by one and have to be placed (immediately and irrevocably) into empty cells of a size-n array. The goal is to minimize the sum of absolute differences between items in consecutive cells. This natural problem was recently introduced by Aamand, Abrahamsen, Beretta, and Kleist (SODA 2023) as a tool in their study of online geometric packing problems. They showed that when the items are reals from the interval [0,1] a competitive ratio of O(√n) is achievable, and no deterministic algorithm can improve this ratio asymptotically. In this paper, we extend and generalize the study of online sorting in three directions: - randomized: we settle the open question of Aamand et al. by showing that the O(√n) competitive ratio for the online sorting of reals cannot be improved even with the use of randomness; - stochastic: we consider inputs consisting of n samples drawn uniformly at random from an interval, and give an algorithm with an improved competitive ratio of Õ(n^{1/4}). The result reveals connections between online sorting and the design of efficient hash tables; - high-dimensional: we show that Õ(√n)-competitive online sorting is possible even for items from ℝ^d, for arbitrary fixed d, in an adversarial model. This can be viewed as an online variant of the classical TSP problem where tasks (cities to visit) are revealed one by one and the salesperson assigns each task (immediately and irrevocably) to its timeslot. Along the way, we also show a tight O(log n)-competitiveness result for uniform metrics, i.e., where items are of different types and the goal is to order them so as to minimize the number of switches between consecutive items of different types.

Cite as

Mikkel Abrahamsen, Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, and László Kozma. Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.ESA.2024.5,
  author =	{Abrahamsen, Mikkel and Bercea, Ioana O. and Beretta, Lorenzo and Klausen, Jonas and Kozma, L\'{a}szl\'{o}},
  title =	{{Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.5},
  URN =		{urn:nbn:de:0030-drops-210766},
  doi =		{10.4230/LIPIcs.ESA.2024.5},
  annote =	{Keywords: sorting, online algorithm, TSP}
}
Document
Cornucopia: Distributed Randomness at Scale

Authors: Miranda Christ, Kevin Choi, and Joseph Bonneau

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
We propose Cornucopia, a protocol framework for distributed randomness beacons combining accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using an accumulator to enable efficient verification by each participant that their contribution has been included. The output is unpredictable as long as at least one participant is honest, yielding a scalable distributed randomness beacon with strong security properties. Proving this approach secure requires developing a novel property of accumulators, insertion security, which we show is both necessary and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure, then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators) are either naturally insertion-secure or can be made so with trivial modifications.

Cite as

Miranda Christ, Kevin Choi, and Joseph Bonneau. Cornucopia: Distributed Randomness at Scale. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 17:1-17:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{christ_et_al:LIPIcs.AFT.2024.17,
  author =	{Christ, Miranda and Choi, Kevin and Bonneau, Joseph},
  title =	{{Cornucopia: Distributed Randomness at Scale}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{17:1--17:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.17},
  URN =		{urn:nbn:de:0030-drops-209533},
  doi =		{10.4230/LIPIcs.AFT.2024.17},
  annote =	{Keywords: Randomness beacons, accumulators}
}
Document
Multilinear Formulations for Computing a Nash Equilibrium of Multi-Player Games

Authors: Miriam Fischer and Akshay Gupte

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-player noncooperative games. We compare the formulations to common algorithms in Gambit, and conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the methods we compare it to, including the quantal response equilibrium method, which is recommended for large games. Hence, the multilinear feasibility program is an alternative method to find a Nash equilibrium in multi-player games, and outperforms many common algorithms. The mixed-integer formulations are generalisations of known mixed-integer programs for two-player games, however unlike two-player games, these mixed-integer programs do not give better performance than existing algorithms.

Cite as

Miriam Fischer and Akshay Gupte. Multilinear Formulations for Computing a Nash Equilibrium of Multi-Player Games. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.SEA.2023.12,
  author =	{Fischer, Miriam and Gupte, Akshay},
  title =	{{Multilinear Formulations for Computing a Nash Equilibrium of Multi-Player Games}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.12},
  URN =		{urn:nbn:de:0030-drops-183620},
  doi =		{10.4230/LIPIcs.SEA.2023.12},
  annote =	{Keywords: Noncooperative n-person games, Nash equilibrium, Multilinear functions, Nonconvex problems, Mixed-integer optimization}
}
  • Refine by Author
  • 1 Abrahamsen, Mikkel
  • 1 Bercea, Ioana O.
  • 1 Beretta, Lorenzo
  • 1 Bonneau, Joseph
  • 1 Choi, Kevin
  • Show More...

  • Refine by Classification
  • 1 Security and privacy → Cryptography
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Exact and approximate computation of equilibria
  • 1 Theory of computation → Nonconvex optimization

  • Refine by Keyword
  • 1 Mixed-integer optimization
  • 1 Multilinear functions
  • 1 Nash equilibrium
  • 1 Nonconvex problems
  • 1 Noncooperative n-person games
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail