5 Search Results for "García-Pérez, Álvaro"


Document
Invited Talk
Meaningfulness and Genericity in a Subsuming Framework (Invited Talk)

Authors: Delia Kesner, Victor Arrial, and Giulio Guerrieri

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang and then characterize it by means of typability and inhabitation in an associated non-idempotent intersection type system previously appearing in the literature. We validate the proposed notion of meaningfulness by showing two properties: (1) consistency of the smallest theory, called ℋ, equating all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on the significance of meaningful terms. The theory ℋ is also shown to have a unique consistent and maximal extension ℋ*, which coincides with a well-known notion of observational equivalence. Last but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.

Cite as

Delia Kesner, Victor Arrial, and Giulio Guerrieri. Meaningfulness and Genericity in a Subsuming Framework (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2024.1,
  author =	{Kesner, Delia and Arrial, Victor and Guerrieri, Giulio},
  title =	{{Meaningfulness and Genericity in a Subsuming Framework}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.1},
  URN =		{urn:nbn:de:0030-drops-203305},
  doi =		{10.4230/LIPIcs.FSCD.2024.1},
  annote =	{Keywords: Lambda calculus, Solvability, Meaningfulness, Inhabitation, Genericity}
}
Document
Optimizing a Non-Deterministic Abstract Machine with Environments

Authors: Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Non-deterministic abstract machine (NDAM) is a recent implementation model for programming languages where one must choose among several redexes at each reduction step, like process calculi. These machines can be derived from a zipper semantics, a mix between structural operational semantics and context-based reduction semantics. Such a machine has been generated also for the λ-calculus without a fixed reduction strategy, i.e., with the full non-deterministic β-reduction. In that machine, substitution is an external operation that replaces all the occurrences of a variable at once. Implementing substitution with environments is more low-level and more efficient as variables are replaced only when needed. In this paper, we define a NDAM with environments for the λ-calculus without a fixed reduction strategy. We also introduce other optimizations, including a form of refocusing, and we show that we can restrict our optimized NDAM to recover some of the usual λ-calculus machines, e.g., the Krivine Abstract Machine. Most of the improvements we propose in this work could be applied to other NDAMs as well.

Cite as

Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt. Optimizing a Non-Deterministic Abstract Machine with Environments. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biernacka_et_al:LIPIcs.FSCD.2024.11,
  author =	{Biernacka, Ma{\l}gorzata and Biernacki, Dariusz and Lenglet, Sergue\"{i} and Schmitt, Alan},
  title =	{{Optimizing a Non-Deterministic Abstract Machine with Environments}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.11},
  URN =		{urn:nbn:de:0030-drops-203409},
  doi =		{10.4230/LIPIcs.FSCD.2024.11},
  annote =	{Keywords: Abstract machine, Explicit substitutions, Refocusing}
}
Document
Deconstructing Stellar Consensus

Authors: Álvaro García-Pérez and Maria A. Schett

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
Some of the recent blockchain proposals, such as Stellar and Ripple, allow for open membership while using quorum-like structures typical for classical Byzantine consensus with closed membership. This is achieved by constructing quorums in a decentralised way: each participant independently chooses whom to trust, and quorums arise from these individual decisions. Unfortunately, the consensus protocols underlying such blockchains are poorly understood, and their correctness has not been rigorously investigated. In this paper we rigorously prove correct the Stellar Consensus Protocol (SCP), with our proof giving insights into the protocol structure and its use of lower-level abstractions. To this end, we first propose an abstract version of SCP that uses as a black box Stellar’s federated voting primitive (analogous to reliable Byzantine broadcast), previously investigated by García-Pérez and Gotsman [Álvaro García-Pérez and Alexey Gotsman, 2018]. The abstract consensus protocol highlights a modular structure in Stellar and can be proved correct by reusing the previous results on federated voting. However, it is unsuited for realistic implementations, since its processes maintain infinite state. We thus establish a refinement between the abstract protocol and the concrete SCP that uses only finite state, thereby carrying over the result about the correctness of former to the latter. Our results help establish the theoretical foundations of decentralised blockchains like Stellar and gain confidence in their correctness.

Cite as

Álvaro García-Pérez and Maria A. Schett. Deconstructing Stellar Consensus. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{garciaperez_et_al:LIPIcs.OPODIS.2019.5,
  author =	{Garc{\'\i}a-P\'{e}rez, \'{A}lvaro and Schett, Maria A.},
  title =	{{Deconstructing Stellar Consensus}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.5},
  URN =		{urn:nbn:de:0030-drops-117910},
  doi =		{10.4230/LIPIcs.OPODIS.2019.5},
  annote =	{Keywords: Blockchain, Consensus protocol, Stellar, Byzantine quorum systems}
}
Document
Federated Byzantine Quorum Systems

Authors: Álvaro García-Pérez and Alexey Gotsman

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
Some of the recent blockchain proposals, such as Stellar and Ripple, use quorum-like structures typical for Byzantine consensus while allowing for open membership. This is achieved by constructing quorums in a decentralised way: each participant independently chooses whom to trust, and quorums arise from these individual decisions. Unfortunately, the theoretical foundations underlying such blockchains have not been thoroughly investigated. To close this gap, in this paper we study decentralised quorum construction by means of federated Byzantine quorum systems, used by Stellar. We rigorously prove the correctness of basic broadcast abstractions over federated quorum systems and establish their relationship to the classical Byzantine quorum systems. In particular, we prove correctness in the realistic setting where Byzantine nodes may lie about their trust choices. We show that this setting leads to a novel variant of Byzantine quorum systems where different nodes may have different understanding of what constitutes a quorum.

Cite as

Álvaro García-Pérez and Alexey Gotsman. Federated Byzantine Quorum Systems. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{garciaperez_et_al:LIPIcs.OPODIS.2018.17,
  author =	{Garc{\'\i}a-P\'{e}rez, \'{A}lvaro and Gotsman, Alexey},
  title =	{{Federated Byzantine Quorum Systems}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.17},
  URN =		{urn:nbn:de:0030-drops-100772},
  doi =		{10.4230/LIPIcs.OPODIS.2018.17},
  annote =	{Keywords: Blockchain, Stellar, Byzantine quorum systems}
}
Document
Rule Formats for Nominal Process Calculi

Authors: Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specification of the early pi-calculus. Our study stems from the recent Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators.

Cite as

Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén. Rule Formats for Nominal Process Calculi. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2017.10,
  author =	{Aceto, Luca and F\'{a}bregas, Ignacio and Garc{\'\i}a-P\'{e}rez, \'{A}lvaro and Ing\'{o}lfsd\'{o}ttir, Anna and Ortega-Mall\'{e}n, Yolanda},
  title =	{{Rule Formats for Nominal Process Calculi}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.10},
  URN =		{urn:nbn:de:0030-drops-77869},
  doi =		{10.4230/LIPIcs.CONCUR.2017.10},
  annote =	{Keywords: nominal sets, nominal structural operational semantics, process algebra, nominal transition systems, scope opening, rule formats}
}
  • Refine by Author
  • 3 García-Pérez, Álvaro
  • 1 Aceto, Luca
  • 1 Arrial, Victor
  • 1 Biernacka, Małgorzata
  • 1 Biernacki, Dariusz
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Distributed computing models
  • 1 Theory of computation → Abstract machines
  • 1 Theory of computation → Operational semantics

  • Refine by Keyword
  • 2 Blockchain
  • 2 Byzantine quorum systems
  • 2 Stellar
  • 1 Abstract machine
  • 1 Consensus protocol
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2017
  • 1 2019
  • 1 2020