2 Search Results for "Ghosal, Purnata"


Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Degree-Restricted Strength Decompositions and Algebraic Branching Programs

Authors: Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer, and Vladimir Lysikov

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
We analyze Kumar’s recent quadratic algebraic branching program size lower bound proof method (CCC 2017) for the power sum polynomial. We present a refinement of this method that gives better bounds in some cases. The lower bound relies on Noether-Lefschetz type conditions on the hypersurface defined by the homogeneous polynomial. In the explicit example that we provide, the lower bound is proved resorting to classical intersection theory. Furthermore, we use similar methods to improve the known lower bound methods for slice rank of polynomials. We consider a sequence of polynomials that have been studied before by Shioda and show that for these polynomials the improved lower bound matches the known upper bound.

Cite as

Fulvio Gesmundo, Purnata Ghosal, Christian Ikenmeyer, and Vladimir Lysikov. Degree-Restricted Strength Decompositions and Algebraic Branching Programs. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gesmundo_et_al:LIPIcs.FSTTCS.2022.20,
  author =	{Gesmundo, Fulvio and Ghosal, Purnata and Ikenmeyer, Christian and Lysikov, Vladimir},
  title =	{{Degree-Restricted Strength Decompositions and Algebraic Branching Programs}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.20},
  URN =		{urn:nbn:de:0030-drops-174127},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.20},
  annote =	{Keywords: Lower bounds, Slice rank, Strength of polynomials, Algebraic branching programs}
}
  • Refine by Author
  • 1 Chatterjee, Prerona
  • 1 Gesmundo, Fulvio
  • 1 Ghosal, Purnata
  • 1 Ikenmeyer, Christian
  • 1 Kush, Deepanshu
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Algebraic complexity theory

  • Refine by Keyword
  • 1 Algebraic Branching Programs
  • 1 Algebraic branching programs
  • 1 Lower Bounds
  • 1 Lower bounds
  • 1 Set-multilinear polynomials
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2024