2 Search Results for "Gonczi, Andrei"


Document
Reconfiguration of Polygonal Subdivisions via Recombination

Authors: Hugo A. Akitaya, Andrei Gonczi, Diane L. Souvaine, Csaba D. Tóth, and Thomas Weighill

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Motivated by the problem of redistricting, we study area-preserving reconfigurations of connected subdivisions of a simple polygon. A connected subdivision of a polygon ℛ, called a district map, is a set of interior disjoint connected polygons called districts whose union equals ℛ. We consider the recombination as the reconfiguration move which takes a subdivision and produces another by merging two adjacent districts, and by splitting them into two connected polygons of the same area as the original districts. The complexity of a map is the number of vertices in the boundaries of its districts. Given two maps with k districts, with complexity O(n), and a perfect matching between districts of the same area in the two maps, we show constructively that (log n)^O(log k) recombination moves are sufficient to reconfigure one into the other. We also show that Ω(log n) recombination moves are sometimes necessary even when k = 3, thus providing a tight bound when k = 3.

Cite as

Hugo A. Akitaya, Andrei Gonczi, Diane L. Souvaine, Csaba D. Tóth, and Thomas Weighill. Reconfiguration of Polygonal Subdivisions via Recombination. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2023.6,
  author =	{A. Akitaya, Hugo and Gonczi, Andrei and Souvaine, Diane L. and T\'{o}th, Csaba D. and Weighill, Thomas},
  title =	{{Reconfiguration of Polygonal Subdivisions via Recombination}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.6},
  URN =		{urn:nbn:de:0030-drops-186598},
  doi =		{10.4230/LIPIcs.ESA.2023.6},
  annote =	{Keywords: configuration space, gerrymandering, polygonal subdivision, recombination}
}
Document
Characterizing Universal Reconfigurability of Modular Pivoting Robots

Authors: Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using O(n³) monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest.

Cite as

Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing Universal Reconfigurability of Modular Pivoting Robots. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SoCG.2021.10,
  author =	{A. Akitaya, Hugo and Demaine, Erik D. and Gonczi, Andrei and Hendrickson, Dylan H. and Hesterberg, Adam and Korman, Matias and Korten, Oliver and Lynch, Jayson and Parada, Irene and Sacrist\'{a}n, Vera},
  title =	{{Characterizing Universal Reconfigurability of Modular Pivoting Robots}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.10},
  URN =		{urn:nbn:de:0030-drops-138094},
  doi =		{10.4230/LIPIcs.SoCG.2021.10},
  annote =	{Keywords: reconfiguration, geometric algorithm, PSPACE-hardness, pivoting hexagons, pivoting squares, modular robots}
}
  • Refine by Author
  • 2 A. Akitaya, Hugo
  • 2 Gonczi, Andrei
  • 1 Demaine, Erik D.
  • 1 Hendrickson, Dylan H.
  • 1 Hesterberg, Adam
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 PSPACE-hardness
  • 1 configuration space
  • 1 geometric algorithm
  • 1 gerrymandering
  • 1 modular robots
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail