1 Search Results for "Gordon, Spencer"


Document
Track A: Algorithms, Complexity and Games
Unique End of Potential Line

Authors: John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The complexity class CLS was proposed by Daskalakis and Papadimitriou in 2011 to understand the complexity of important NP search problems that admit both path following and potential optimizing algorithms. Here we identify a subclass of CLS - called UniqueEOPL - that applies a more specific combinatorial principle that guarantees unique solutions. We show that UniqueEOPL contains several important problems such as the P-matrix Linear Complementarity Problem, finding Fixed Point of Contraction Maps, and solving Unique Sink Orientations (USOs). UniqueEOPL seems to a proper subclass of CLS and looks more likely to be the right class for the problems of interest. We identify a problem - closely related to solving contraction maps and USOs - that is complete for UniqueEOPL. Our results also give the fastest randomised algorithm for P-matrix LCP.

Cite as

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 56:1-56:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.ICALP.2019.56,
  author =	{Fearnley, John and Gordon, Spencer and Mehta, Ruta and Savani, Rahul},
  title =	{{Unique End of Potential Line}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{56:1--56:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.56},
  URN =		{urn:nbn:de:0030-drops-106327},
  doi =		{10.4230/LIPIcs.ICALP.2019.56},
  annote =	{Keywords: P-matrix linear complementarity problem, unique sink orientation, contraction map, TFNP, total search problems, continuous local search}
}
  • Refine by Author
  • 1 Fearnley, John
  • 1 Gordon, Spencer
  • 1 Mehta, Ruta
  • 1 Savani, Rahul

  • Refine by Classification
  • 1 Theory of computation → Problems, reductions and completeness

  • Refine by Keyword
  • 1 P-matrix linear complementarity problem
  • 1 TFNP
  • 1 continuous local search
  • 1 contraction map
  • 1 total search problems
  • Show More...

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail