7 Search Results for "Hirschowitz, André"


Document
Modules over Monads and Operational Semantics

Authors: André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as ̅λμ-calculus, π-calculus, Positive GSOS specifications, differential λ-calculus, and the big-step, simply-typed, call-by-value λ-calculus. Finally, we design a suitable notion of signature for transition monads.

Cite as

André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over Monads and Operational Semantics. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 12:1-12:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hirschowitz_et_al:LIPIcs.FSCD.2020.12,
  author =	{Hirschowitz, Andr\'{e} and Hirschowitz, Tom and Lafont, Ambroise},
  title =	{{Modules over Monads and Operational Semantics}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.12},
  URN =		{urn:nbn:de:0030-drops-123341},
  doi =		{10.4230/LIPIcs.FSCD.2020.12},
  annote =	{Keywords: Operational semantics, Category theory}
}
Document
Modular Specification of Monads Through Higher-Order Presentations

Authors: Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
In their work on second-order equational logic, Fiore and Hur have studied presentations of simply typed languages by generating binding constructions and equations among them. To each pair consisting of a binding signature and a set of equations, they associate a category of "models", and they give a monadicity result which implies that this category has an initial object, which is the language presented by the pair. In the present work, we propose, for the untyped setting, a variant of their approach where monads and modules over them are the central notions. More precisely, we study, for monads over sets, presentations by generating ("higher-order") operations and equations among them. We consider a notion of 2-signature which allows to specify a monad with a family of binding operations subject to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified by its two standard constructions (application and abstraction) subject to beta- and eta-equalities. Such a 2-signature is hence a pair (Sigma,E) of a binding signature Sigma and a family E of equations for Sigma. This notion of 2-signature has been introduced earlier by Ahrens in a slightly different context. We associate, to each 2-signature (Sigma,E), a category of "models of (Sigma,E)"; and we say that a 2-signature is "effective" if this category has an initial object; the monad underlying this (essentially unique) object is the "monad specified by the 2-signature". Not every 2-signature is effective; we identify a class of 2-signatures, which we call "algebraic", that are effective. Importantly, our 2-signatures together with their models enjoy "modularity": when we glue (algebraic) 2-signatures together, their initial models are glued accordingly. We provide a computer formalization for our main results.

Cite as

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular Specification of Monads Through Higher-Order Presentations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 6:1-6:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.6,
  author =	{Ahrens, Benedikt and Hirschowitz, Andr\'{e} and Lafont, Ambroise and Maggesi, Marco},
  title =	{{Modular Specification of Monads Through Higher-Order Presentations}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.6},
  URN =		{urn:nbn:de:0030-drops-105136},
  doi =		{10.4230/LIPIcs.FSCD.2019.6},
  annote =	{Keywords: free monads, presentation of monads, initial semantics, signatures, syntax, monadic substitution, computer-checked proofs}
}
Document
High-Level Signatures and Initial Semantics

Authors: Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We present a device for specifying and reasoning about syntax for datatypes, programming languages, and logic calculi. More precisely, we consider a general notion of "signature" for specifying syntactic constructions. Our signatures subsume classical algebraic signatures (i.e., signatures for languages with variable binding, such as the pure lambda calculus) and extend to much more general examples. In the spirit of Initial Semantics, we define the "syntax generated by a signature" to be the initial object - if it exists - in a suitable category of models. Our notions of signature and syntax are suited for compositionality and provide, beyond the desired algebra of terms, a well-behaved substitution and the associated inductive/recursive principles. Our signatures are "general" in the sense that the existence of an associated syntax is not automatically guaranteed. In this work, we identify a large and simple class of signatures which do generate a syntax. This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn, was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uustalu. The main results presented in the paper are computer-checked within the UniMath system.

Cite as

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-Level Signatures and Initial Semantics. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 4:1-4:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.CSL.2018.4,
  author =	{Ahrens, Benedikt and Hirschowitz, Andr\'{e} and Lafont, Ambroise and Maggesi, Marco},
  title =	{{High-Level Signatures and Initial Semantics}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.4},
  URN =		{urn:nbn:de:0030-drops-96713},
  doi =		{10.4230/LIPIcs.CSL.2018.4},
  annote =	{Keywords: initial semantics, signatures, syntax, monadic substitution, computer-checked proofs}
}
Document
An Intensionally Fully-abstract Sheaf Model for pi

Authors: Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller

Published in: LIPIcs, Volume 35, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)


Abstract
Following previous work on CCS, we propose a compositional model for the pi-calculus in which processes are interpreted as sheaves on certain simple sites. We define an analogue of fair testing equivalence in the model and show that our interpretation is intensionally fully abstract for it. That is, the interpretation preserves and reflects fair testing equivalence; and furthermore, any strategy is fair testing equivalent to the interpretation of some process. The central part of our work is the construction of our sites, whose heart is a combinatorial presentation of pi-calculus traces in the spirit of string diagrams. As in previous work, the sheaf condition is analogous to innocence in Hyland-Ong/Nickau games.

Cite as

Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. An Intensionally Fully-abstract Sheaf Model for pi. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 86-100, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{eberhart_et_al:LIPIcs.CALCO.2015.86,
  author =	{Eberhart, Clovis and Hirschowitz, Tom and Seiller, Thomas},
  title =	{{An Intensionally Fully-abstract Sheaf Model for pi}},
  booktitle =	{6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)},
  pages =	{86--100},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-84-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{35},
  editor =	{Moss, Lawrence S. and Sobocinski, Pawel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2015.86},
  URN =		{urn:nbn:de:0030-drops-55284},
  doi =		{10.4230/LIPIcs.CALCO.2015.86},
  annote =	{Keywords: concurrency, sheaves, causal models, games}
}
Document
The General Universal Property of the Propositional Truncation

Authors: Nicolai Kraus

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least unit, sigma, pi, and identity types), we define the type of coherently constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega^op. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of coherently constant function is equivalent to the type ||A|| -> B. If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in standard syntactical homotopy type theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a propositional type Q with A -> Q and Q -> B.

Cite as

Nicolai Kraus. The General Universal Property of the Propositional Truncation. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 111-145, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kraus:LIPIcs.TYPES.2014.111,
  author =	{Kraus, Nicolai},
  title =	{{The General Universal Property of the Propositional Truncation}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{111--145},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.111},
  URN =		{urn:nbn:de:0030-drops-54944},
  doi =		{10.4230/LIPIcs.TYPES.2014.111},
  annote =	{Keywords: coherence conditions, propositional truncation, Reedy limits, universal property, well-behaved constancy}
}
Document
Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

Authors: Benedikt Ahrens and Régis Spadotti

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
We study the notions of relative comonad and comodule over a relative comonad. We use these notions to give categorical semantics for the coinductive type families of streams and of infinite triangular matrices and their respective cosubstitution operations in intensional Martin-Löf type theory. Our results are mechanized in the proof assistant Coq.

Cite as

Benedikt Ahrens and Régis Spadotti. Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.TYPES.2014.1,
  author =	{Ahrens, Benedikt and Spadotti, R\'{e}gis},
  title =	{{Terminal Semantics for Codata Types in Intensional Martin-L\"{o}f Type Theory}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{1--26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.1},
  URN =		{urn:nbn:de:0030-drops-54891},
  doi =		{10.4230/LIPIcs.TYPES.2014.1},
  annote =	{Keywords: relative comonad, Martin-L\"{o}f type theory, coinductive type, computer theorem proving}
}
Document
Wild omega-Categories for the Homotopy Hypothesis in Type Theory

Authors: André Hirschowitz, Tom Hirschowitz, and Nicolas Tabareau

Published in: LIPIcs, Volume 38, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)


Abstract
In classical homotopy theory, the homotopy hypothesis asserts that the fundamental varpi-groupoid construction induces an equivalence between topological spaces and weak varpi-groupoids. In the light of Voevodsky's univalent foundations program, which puts forward an interpretation of types as topological spaces, we consider the question of transposing the homotopy hypothesis to type theory. Indeed such a transposition could stand as a new approach to specifying higher inductive types. Since the formalisation of general weak varpi-groupoids in type theory is a difficult task, we only take a first step towards this goal, which consists in exploring a shortcut through strict varpi-categories. The first outcome is a satisfactory type-theoretic notion of strict varpi-category, which has hsets of cells in all dimensions. For this notion, defining the 'fundamental strict varpi-category' of a type seems out of reach. The second outcome is an 'incoherently strict' notion of type-theoretic varpi-category, which admits arbitrary types of cells in all dimensions. These are the 'wild' varpi-categories of the title. They allow the definition of a 'fundamental wild varpi-category' map, which leads to our (partial) homotopy hypothesis for type theory (stating an adjunction, not an equivalence). All of our results have been formalised in the Coq proof assistant. Our formalisation makes systematic use of the machinery of coinductive types.

Cite as

André Hirschowitz, Tom Hirschowitz, and Nicolas Tabareau. Wild omega-Categories for the Homotopy Hypothesis in Type Theory. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 38, pp. 226-240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{hirschowitz_et_al:LIPIcs.TLCA.2015.226,
  author =	{Hirschowitz, Andr\'{e} and Hirschowitz, Tom and Tabareau, Nicolas},
  title =	{{Wild omega-Categories for the Homotopy Hypothesis in Type Theory}},
  booktitle =	{13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)},
  pages =	{226--240},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-87-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{38},
  editor =	{Altenkirch, Thorsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TLCA.2015.226},
  URN =		{urn:nbn:de:0030-drops-51669},
  doi =		{10.4230/LIPIcs.TLCA.2015.226},
  annote =	{Keywords: Homotopy Type theory; Omega-categories; Coinduction; Homotopy hypothesis}
}
  • Refine by Author
  • 4 Hirschowitz, André
  • 3 Ahrens, Benedikt
  • 3 Hirschowitz, Tom
  • 3 Lafont, Ambroise
  • 2 Maggesi, Marco
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Algebraic language theory
  • 1 Theory of computation → Categorical semantics
  • 1 Theory of computation → Operational semantics
  • 1 Theory of computation → Semantics and reasoning

  • Refine by Keyword
  • 2 computer-checked proofs
  • 2 initial semantics
  • 2 monadic substitution
  • 2 signatures
  • 2 syntax
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 4 2015
  • 1 2018
  • 1 2019
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail