2 Search Results for "Huet, Gérard"


Document
On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems

Authors: Franz Baader and Jürgen Giesl

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Motivated by an application where we try to make proofs for Description Logic inferences smaller by rewriting, we consider the following decision problem, which we call the small term reachability problem: given a term rewriting system R, a term s, and a natural number n, decide whether there is a term t of size ≤ n reachable from s using the rules of R. We investigate the complexity of this problem depending on how termination of R can be established. We show that the problem is NP-complete for length-reducing term rewriting systems. Its complexity increases to N2ExpTime-complete (NExpTime-complete) if termination is proved using a (linear) polynomial order and to PSpace-complete for systems whose termination can be shown using a restricted class of Knuth-Bendix orders. Confluence reduces the complexity to P for the length-reducing case, but has no effect on the worst-case complexity in the other two cases.

Cite as

Franz Baader and Jürgen Giesl. On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baader_et_al:LIPIcs.FSCD.2024.16,
  author =	{Baader, Franz and Giesl, J\"{u}rgen},
  title =	{{On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.16},
  URN =		{urn:nbn:de:0030-drops-203454},
  doi =		{10.4230/LIPIcs.FSCD.2024.16},
  annote =	{Keywords: Rewriting, Termination, Confluence, Creating small terms, Derivational complexity, Description Logics, Proof rewriting}
}
Document
Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization

Authors: Gérard Huet

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
We describe experiments in teaching fundamental informatics notions around mathematical structures for formal concepts, and effective algorithms to manipulate them. The major themes of lambda-calculus and type theory served as guides for the effective implementation of functional programming languages and higher-order proof assistants, appropriate for reflecting the theoretical material into effective tools to represent constructively the concepts and formally certify the proofs of their properties. Progressively, a literate programming and proving style replaced informal mathematics in the presentation of the material as executable course notes. The talk will evoke the various stages of (in)completion of the corresponding set of notes along the years, and tell how their elaboration proved to be essential to the discovery of fundamental results.

Cite as

Gérard Huet. Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{huet:LIPIcs.FSCD.2016.3,
  author =	{Huet, G\'{e}rard},
  title =	{{Teaching Foundations of Computation and Deduction Through Literate Functional Programming and Type Theory Formalization}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.3},
  URN =		{urn:nbn:de:0030-drops-60020},
  doi =		{10.4230/LIPIcs.FSCD.2016.3},
  annote =	{Keywords: Foundations, Computation, Deduction, Programming, Proofs}
}
  • Refine by Author
  • 1 Baader, Franz
  • 1 Giesl, Jürgen
  • 1 Huet, Gérard

  • Refine by Classification
  • 1 Theory of computation → Automated reasoning
  • 1 Theory of computation → Complexity theory and logic
  • 1 Theory of computation → Equational logic and rewriting

  • Refine by Keyword
  • 1 Computation
  • 1 Confluence
  • 1 Creating small terms
  • 1 Deduction
  • 1 Derivational complexity
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2024