6 Search Results for "Katz, Daniel S."


Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Dynamic Time Warping-Based Proximity Problems

Authors: Boris Aronov, Matthew J. Katz, and Elad Sulami

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Dynamic Time Warping (DTW) is a well-known similarity measure for curves, i.e., sequences of points, and especially for time series. We study several proximity problems for curves, where dynamic time warping is the underlying similarity measure. More precisely, we focus on the variants of these problems, in which, whenever we refer to the dynamic time warping distance between two curves, one of them is a line segment (i.e., a sequence of length two). These variants already reveal some of the difficulties that occur when dealing with the more general ones. Specifically, we study the following three problems: (i) distance oracle: given a curve C in ℝ^d, preprocess it to accommodate distance computations between query segments and C, (ii) segment center: given a set 𝒞 of curves in ℝ^d, find a segment s that minimizes the maximum distance between s and a curve in 𝒞, and (iii) segment nearest neighbor: given 𝒞, construct a data structure for segment nearest neighbor queries, i.e., return the curve in 𝒞 which is closest to a query segment s. We present solutions to these problems in any constant dimension d ≥ 1, using L_∞ for inter-point distances. We also consider the approximation version of the first problem, using L₁ for inter-point distances. That is, given a length-m curve C in ℝ^d, we construct a data structure of size O(m log m) that allows one to compute a 2-approximation of the distance between a query segment s and C in O(log³ m) time. Finally, we describe an interesting experimental study that we performed, which is related to the first problem above.

Cite as

Boris Aronov, Matthew J. Katz, and Elad Sulami. Dynamic Time Warping-Based Proximity Problems. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.MFCS.2020.9,
  author =	{Aronov, Boris and Katz, Matthew J. and Sulami, Elad},
  title =	{{Dynamic Time Warping-Based Proximity Problems}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.9},
  URN =		{urn:nbn:de:0030-drops-126794},
  doi =		{10.4230/LIPIcs.MFCS.2020.9},
  annote =	{Keywords: dynamic time warping, distance oracle, clustering, nearest-neighbor search}
}
Document
Reachability in a Planar Subdivision with Direction Constraints

Authors: Daniel Binham, Pedro Machado Manhaes de Castro, and Antoine Vigneron

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
Given a planar subdivision with n vertices, each face having a cone of possible directions of travel, our goal is to decide which vertices of the subdivision can be reached from a given starting point s. We give an O(n log n)-time algorithm for this problem, as well as an Omega(n log n) lower bound in the algebraic computation tree model. We prove that the generalization where two cones of directions per face are allowed is NP-hard.

Cite as

Daniel Binham, Pedro Machado Manhaes de Castro, and Antoine Vigneron. Reachability in a Planar Subdivision with Direction Constraints. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{binham_et_al:LIPIcs.SoCG.2017.17,
  author =	{Binham, Daniel and Manhaes de Castro, Pedro Machado and Vigneron, Antoine},
  title =	{{Reachability in a Planar Subdivision with Direction Constraints}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.17},
  URN =		{urn:nbn:de:0030-drops-72022},
  doi =		{10.4230/LIPIcs.SoCG.2017.17},
  annote =	{Keywords: Design and analysis of geometric algorithms, Path planning, Reachability}
}
Document
Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)

Authors: Alice Allen, Cecilia Aragon, Christoph Becker, Jeffrey Carver, Andrei Chis, Benoit Combemale, Mike Croucher, Kevin Crowston, Daniel Garijo, Ashish Gehani, Carole Goble, Robert Haines, Robert Hirschfeld, James Howison, Kathryn Huff, Caroline Jay, Daniel S. Katz, Claude Kirchner, Katie Kuksenok, Ralf Lämmel, Oscar Nierstrasz, Matt Turk, Rob van Nieuwpoort, Matthew Vaughn, and Jurgen J. Vinju

Published in: Dagstuhl Manifestos, Volume 6, Issue 1 (2017)


Abstract
Software is often a critical component of scientific research. It can be a component of the academic research methods used to produce research results, or it may itself be an academic research result. Software, however, has rarely been considered to be a citable artifact in its own right. With the advent of open-source software, artifact evaluation committees of conferences, and journals that include source code and running systems as part of the published artifacts, we foresee that software will increasingly be recognized as part of the academic process. The quality and sustainability of this software must be accounted for, both a prioro and a posteriori. The Dagstuhl Perspectives Workshop on "Engineering Academic Software" has examined the strengths, weaknesses, risks, and opportunities of academic software engineering. A key outcome of the workshop is this Dagstuhl Manifesto, serving as a roadmap towards future professional software engineering for software-based research instruments and other software produced and used in an academic context. The manifesto is expressed in terms of a series of actionable "pledges" that users and developers of academic research software can take as concrete steps towards improving the environment in which that software is produced.

Cite as

Alice Allen, Cecilia Aragon, Christoph Becker, Jeffrey Carver, Andrei Chis, Benoit Combemale, Mike Croucher, Kevin Crowston, Daniel Garijo, Ashish Gehani, Carole Goble, Robert Haines, Robert Hirschfeld, James Howison, Kathryn Huff, Caroline Jay, Daniel S. Katz, Claude Kirchner, Katie Kuksenok, Ralf Lämmel, Oscar Nierstrasz, Matt Turk, Rob van Nieuwpoort, Matthew Vaughn, and Jurgen J. Vinju. Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). In Dagstuhl Manifestos, Volume 6, Issue 1, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{allen_et_al:DagMan.6.1.1,
  author =	{Allen, Alice and Aragon, Cecilia and Becker, Christoph and Carver, Jeffrey and Chis, Andrei and Combemale, Benoit and Croucher, Mike and Crowston, Kevin and Garijo, Daniel and Gehani, Ashish and Goble, Carole and Haines, Robert and Hirschfeld, Robert and Howison, James and Huff, Kathryn and Jay, Caroline and Katz, Daniel S. and Kirchner, Claude and Kuksenok, Katie and L\"{a}mmel, Ralf and Nierstrasz, Oscar and Turk, Matt and van Nieuwpoort, Rob and Vaughn, Matthew and Vinju, Jurgen J.},
  title =	{{Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)}},
  pages =	{1--20},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2017},
  volume =	{6},
  number =	{1},
  editor =	{Allen, Alice and Aragon, Cecilia and Becker, Christoph and Carver, Jeffrey and Chis, Andrei and Combemale, Benoit and Croucher, Mike and Crowston, Kevin and Garijo, Daniel and Gehani, Ashish and Goble, Carole and Haines, Robert and Hirschfeld, Robert and Howison, James and Huff, Kathryn and Jay, Caroline and Katz, Daniel S. and Kirchner, Claude and Kuksenok, Katie and L\"{a}mmel, Ralf and Nierstrasz, Oscar and Turk, Matt and van Nieuwpoort, Rob and Vaughn, Matthew and Vinju, Jurgen J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.6.1.1},
  URN =		{urn:nbn:de:0030-drops-71468},
  doi =		{10.4230/DagMan.6.1.1},
  annote =	{Keywords: Academic software, Research software, Software citation, Software sustainability}
}
  • Refine by Author
  • 1 Allen, Alice
  • 1 Aragon, Cecilia
  • 1 Aronov, Boris
  • 1 Becker, Christoph
  • 1 Binham, Daniel
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Discrete space search
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Theory of computation → Algorithmic game theory
  • Show More...

  • Refine by Keyword
  • 1 Academic software
  • 1 Applications of logics
  • 1 Benckmark dataset
  • 1 Combinatorial reconfiguration
  • 1 Declarative representations
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 3 2024
  • 2 2017
  • 1 2020