4 Search Results for "Klein, Ohad"


Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
Track A: Algorithms, Complexity and Games
List Update with Delays or Time Windows

Authors: Yossi Azar, Shahar Lewkowicz, and Danny Vainstein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned "Move to Front" algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.

Cite as

Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List Update with Delays or Time Windows. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{azar_et_al:LIPIcs.ICALP.2024.15,
  author =	{Azar, Yossi and Lewkowicz, Shahar and Vainstein, Danny},
  title =	{{List Update with Delays or Time Windows}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.15},
  URN =		{urn:nbn:de:0030-drops-201583},
  doi =		{10.4230/LIPIcs.ICALP.2024.15},
  annote =	{Keywords: Online, List Update, Delay, Time Window, Deadline}
}
Document
Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality

Authors: Ohad Klein, Joseph Slote, Alexander Volberg, and Haonan Zhang

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Recent efforts in Analysis of Boolean Functions aim to extend core results to new spaces, including to the slice binom([n],k), the hypergrid [K]ⁿ, and noncommutative spaces (matrix algebras). We present here a new way to relate functions on the hypergrid (or products of cyclic groups) to their harmonic extensions over the polytorus. We show the supremum of a function f over products of the cyclic group {exp(2π i k/K)}_{k = 1}^K controls the supremum of f over the entire polytorus ({z ∈ ℂ:|z| = 1}ⁿ), with multiplicative constant C depending on K and deg(f) only. This Remez-type inequality appears to be the first such estimate that is dimension-free (i.e., C does not depend on n). This dimension-free Remez-type inequality removes the main technical barrier to giving 𝒪(log n) sample complexity, polytime algorithms for learning low-degree polynomials on the hypergrid and low-degree observables on level-K qudit systems. In particular, our dimension-free Remez inequality implies new Bohnenblust-Hille-type estimates which are central to the learning algorithms and appear unobtainable via standard techniques. Thus we extend to new spaces a recent line of work [Eskenazis and Ivanisvili, 2022; Huang et al., 2022; Volberg and Zhang, 2023] that gave similarly efficient methods for learning low-degree polynomials on the hypercube and observables on qubits. An additional product of these efforts is a new class of distributions over which arbitrary quantum observables are well-approximated by their low-degree truncations - a phenomenon that greatly extends the reach of low-degree learning in quantum science [Huang et al., 2022].

Cite as

Ohad Klein, Joseph Slote, Alexander Volberg, and Haonan Zhang. Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 69:1-69:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{klein_et_al:LIPIcs.ITCS.2024.69,
  author =	{Klein, Ohad and Slote, Joseph and Volberg, Alexander and Zhang, Haonan},
  title =	{{Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{69:1--69:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.69},
  URN =		{urn:nbn:de:0030-drops-195977},
  doi =		{10.4230/LIPIcs.ITCS.2024.69},
  annote =	{Keywords: Analysis of Boolean Functions, Remez Inequality, Bohnenblust-Hille Inequality, Statistical Learning Theory, Qudits}
}
Document
Locality-Preserving Hashing for Shifts with Connections to Cryptography

Authors: Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, and Ohad Klein

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Can we sense our location in an unfamiliar environment by taking a sublinear-size sample of our surroundings? Can we efficiently encrypt a message that only someone physically close to us can decrypt? To solve this kind of problems, we introduce and study a new type of hash functions for finding shifts in sublinear time. A function h:{0,1}ⁿ → ℤ_n is a (d,δ) locality-preserving hash function for shifts (LPHS) if: (1) h can be computed by (adaptively) querying d bits of its input, and (2) Pr[h(x) ≠ h(x ≪ 1) + 1] ≤ δ, where x is random and ≪ 1 denotes a cyclic shift by one bit to the left. We make the following contributions. - Near-optimal LPHS via Distributed Discrete Log. We establish a general two-way connection between LPHS and algorithms for distributed discrete logarithm in the generic group model. Using such an algorithm of Dinur et al. (Crypto 2018), we get LPHS with near-optimal error of δ = Õ(1/d²). This gives an unusual example for the usefulness of group-based cryptography in a post-quantum world. We extend the positive result to non-cyclic and worst-case variants of LPHS. - Multidimensional LPHS. We obtain positive and negative results for a multidimensional extension of LPHS, making progress towards an optimal 2-dimensional LPHS. - Applications. We demonstrate the usefulness of LPHS by presenting cryptographic and algorithmic applications. In particular, we apply multidimensional LPHS to obtain an efficient "packed" implementation of homomorphic secret sharing and a sublinear-time implementation of location-sensitive encryption whose decryption requires a significantly overlapping view.

Cite as

Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, and Ohad Klein. Locality-Preserving Hashing for Shifts with Connections to Cryptography. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 27:1-27:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boyle_et_al:LIPIcs.ITCS.2022.27,
  author =	{Boyle, Elette and Dinur, Itai and Gilboa, Niv and Ishai, Yuval and Keller, Nathan and Klein, Ohad},
  title =	{{Locality-Preserving Hashing for Shifts with Connections to Cryptography}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{27:1--27:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.27},
  URN =		{urn:nbn:de:0030-drops-156231},
  doi =		{10.4230/LIPIcs.ITCS.2022.27},
  annote =	{Keywords: Sublinear algorithms, metric embeddings, shift finding, discrete logarithm, homomorphic secret sharing}
}
  • Refine by Author
  • 2 Klein, Ohad
  • 1 Arunachalam, Srinivasan
  • 1 Azar, Yossi
  • 1 Boyle, Elette
  • 1 Dinur, Itai
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Mathematical analysis
  • 1 Theory of computation → Boolean function learning
  • 1 Theory of computation → Cryptographic primitives
  • 1 Theory of computation → Nearest neighbor algorithms
  • 1 Theory of computation → Online algorithms
  • Show More...

  • Refine by Keyword
  • 1 Analysis of Boolean Functions
  • 1 Bohnenblust-Hille Inequality
  • 1 Deadline
  • 1 Delay
  • 1 List Update
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2022