3 Search Results for "Krogmann, Simon"


Document
Track A: Algorithms, Complexity and Games
Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles

Authors: Surender Baswana and Koustav Bhanja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let G be a directed weighted graph on n vertices and m edges with designated source and sink vertices s and t. An edge in G is vital if its removal reduces the capacity of (s,t)-mincut. Since the seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for either undirected or unweighted graphs. We present the following result for directed weighted graphs that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019]. 1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most vital edge of G using {O}(n) maximum (s,t)-flow computations. Vital edges play a crucial role in the design of sensitivity oracle for (s,t)-mincut - a compact data structure for reporting (s,t)-mincut after insertion/failure of any edge. For directed graphs, the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS 1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows. 2. Sensitivity Oracles: a) There is an optimal O(n²) space data structure that can report an (s,t)-mincut C in O(|C|) time after the failure/insertion of any edge. b) There is an O(n) space data structure that can report the capacity of (s,t)-mincut after failure or insertion of any edge e in O(1) time if the capacity of edge e is known. A mincut for a vital edge e is an (s,t)-cut of the least capacity in which edge e is outgoing. For unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m) space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges. Conversely, there is a set containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. We generalize these results for directed weighted graphs as follows. 3. Structural & Combinatorial Results: a) There is a set M containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. This bound is tight as well. We also show that set M can be computed using O(n) maximum (s,t)-flow computations. b) We design two compact structures for storing and characterizing all mincuts for all vital edges - (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete characterization. To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.

Cite as

Surender Baswana and Koustav Bhanja. Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ICALP.2024.17,
  author =	{Baswana, Surender and Bhanja, Koustav},
  title =	{{Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, \& Optimal Sensitivity Oracles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{17:1--17:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.17},
  URN =		{urn:nbn:de:0030-drops-201601},
  doi =		{10.4230/LIPIcs.ICALP.2024.17},
  annote =	{Keywords: maxflow, vital edges, graph algorithms, structures, st-cuts, sensitivity oracle}
}
Document
Track A: Algorithms, Complexity and Games
Fault-Tolerant ST-Diameter Oracles

Authors: Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, and Martin Schirneck

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the problem of estimating the ST-diameter of a graph that is subject to a bounded number of edge failures. An f-edge fault-tolerant ST-diameter oracle (f-FDO-ST) is a data structure that preprocesses a given graph G, two sets of vertices S,T, and positive integer f. When queried with a set F of at most f edges, the oracle returns an estimate D̂ of the ST-diameter diam(G-F,S,T), the maximum distance between vertices in S and T in G-F. The oracle has stretch σ ⩾ 1 if diam(G-F,S,T) ⩽ D̂ ⩽ σ diam(G-F,S,T). If S and T both contain all vertices, the data structure is called an f-edge fault-tolerant diameter oracle (f-FDO). An f-edge fault-tolerant distance sensitivity oracles (f-DSO) estimates the pairwise graph distances under up to f failures. We design new f-FDOs and f-FDO-STs by reducing their construction to that of all-pairs and single-source f-DSOs. We obtain several new tradeoffs between the size of the data structure, stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box reductions with known results from the literature. We also provide an information-theoretic lower bound on the space requirement of approximate f-FDOs. We show that there exists a family of graphs for which any f-FDO with sensitivity f ⩾ 2 and stretch less than 5/3 requires Ω(n^{3/2}) bits of space, regardless of the query time.

Cite as

Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, and Martin Schirneck. Fault-Tolerant ST-Diameter Oracles. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.ICALP.2023.24,
  author =	{Bil\`{o}, Davide and Choudhary, Keerti and Cohen, Sarel and Friedrich, Tobias and Krogmann, Simon and Schirneck, Martin},
  title =	{{Fault-Tolerant ST-Diameter Oracles}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.24},
  URN =		{urn:nbn:de:0030-drops-180762},
  doi =		{10.4230/LIPIcs.ICALP.2023.24},
  annote =	{Keywords: diameter oracles, distance sensitivity oracles, space lower bounds, fault-tolerant data structures}
}
Document
Probabilistic Routing for On-Street Parking Search

Authors: Tobias Arndt, Danijar Hafner, Thomas Kellermeier, Simon Krogmann, Armin Razmjou, Martin S. Krejca, Ralf Rothenberger, and Tobias Friedrich

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
An estimated 30% of urban traffic is caused by search for parking spots [Shoup, 2005]. Suggesting routes along highly probable parking spots could reduce traffic. In this paper, we formalize parking search as a probabilistic problem on a road graph and show that it is NP-complete. We explore heuristics that optimize for the driving duration and the walking distance to the destination. Routes are constrained to reach a certain probability threshold of finding a spot. Empirically estimated probabilities of successful parking attempts are provided by TomTom on a per-street basis. We release these probabilities as a dataset of about 80,000 roads covering the Berlin area. This allows to evaluate parking search algorithms on a real road network with realistic probabilities for the first time. However, for many other areas, parking probabilities are not openly available. Because they are effortful to collect, we propose an algorithm that relies on conventional road attributes only. Our experiments show that this algorithm comes close to the baseline by a factor of 1.3 in our cost measure. This leads to the conclusion that conventional road attributes may be sufficient to compute reasonably good parking search routes.

Cite as

Tobias Arndt, Danijar Hafner, Thomas Kellermeier, Simon Krogmann, Armin Razmjou, Martin S. Krejca, Ralf Rothenberger, and Tobias Friedrich. Probabilistic Routing for On-Street Parking Search. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{arndt_et_al:LIPIcs.ESA.2016.6,
  author =	{Arndt, Tobias and Hafner, Danijar and Kellermeier, Thomas and Krogmann, Simon and Razmjou, Armin and Krejca, Martin S. and Rothenberger, Ralf and Friedrich, Tobias},
  title =	{{Probabilistic Routing for On-Street Parking Search}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.6},
  URN =		{urn:nbn:de:0030-drops-63489},
  doi =		{10.4230/LIPIcs.ESA.2016.6},
  annote =	{Keywords: parking search, on-street parking, probabilistic routing, constrained optimization, dataset}
}
  • Refine by Author
  • 2 Friedrich, Tobias
  • 2 Krogmann, Simon
  • 1 Arndt, Tobias
  • 1 Baswana, Surender
  • 1 Bhanja, Koustav
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Data structures design and analysis
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Cell probe models and lower bounds
  • 1 Theory of computation → Network flows
  • 1 Theory of computation → Shortest paths

  • Refine by Keyword
  • 1 constrained optimization
  • 1 dataset
  • 1 diameter oracles
  • 1 distance sensitivity oracles
  • 1 fault-tolerant data structures
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2023
  • 1 2024