4 Search Results for "Kumar, Vinayak M."


Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
Track A: Algorithms, Complexity and Games
Linear Relaxed Locally Decodable and Correctable Codes Do Not Need Adaptivity and Two-Sided Error

Authors: Guy Goldberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Relaxed locally decodable codes (RLDCs) are error-correcting codes in which individual bits of the message can be recovered by querying only a few bits from a noisy codeword. For uncorrupted codewords, and for every bit, the decoder must decode the bit correctly with high probability. However, for a noisy codeword, a relaxed local decoder is allowed to output a "rejection" symbol, indicating that the decoding failed. We study the power of adaptivity and two-sided error for RLDCs. Our main result is that if the underlying code is linear, adaptivity and two-sided error do not give any power to relaxed local decoding. We construct a reduction from adaptive, two-sided error relaxed local decoders to non-adaptive, one-sided error ones. That is, the reduction produces a relaxed local decoder that never errs or rejects if its input is a valid codeword and makes queries based on its internal randomness (and the requested index to decode), independently of the input. The reduction essentially maintains the query complexity, requiring at most one additional query. For any input, the decoder’s error probability increases at most two-fold. Furthermore, assuming the underlying code is in systematic form, where the original message is embedded as the first bits of its encoding, the reduction also conserves both the code itself and its rate and distance properties We base the reduction on our new notion of additive promise problems. A promise problem is additive if the sum of any two YES-instances is a YES-instance and the sum of any NO-instance and a YES-instance is a NO-instance. This novel framework captures both linear RLDCs and property testing (of linear properties), despite their significant differences. We prove that in general, algorithms for any additive promise problem do not gain power from adaptivity or two-sided error, and obtain the result for RLDCs as a special case. The result also holds for relaxed locally correctable codes (RLCCs), where a codeword bit should be recovered. As an application, we improve the best known lower bound for linear adaptive RLDCs. Specifically, we prove that such codes require block length of n ≥ k^{1+Ω(1/q²)}, where k denotes the message length and q denotes the number of queries.

Cite as

Guy Goldberg. Linear Relaxed Locally Decodable and Correctable Codes Do Not Need Adaptivity and Two-Sided Error. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 74:1-74:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goldberg:LIPIcs.ICALP.2024.74,
  author =	{Goldberg, Guy},
  title =	{{Linear Relaxed Locally Decodable and Correctable Codes Do Not Need Adaptivity and Two-Sided Error}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{74:1--74:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.74},
  URN =		{urn:nbn:de:0030-drops-202174},
  doi =		{10.4230/LIPIcs.ICALP.2024.74},
  annote =	{Keywords: Locally decodable codes, Relaxed locally correctable codes, Relaxed locally decodable codes}
}
Document
Tight Correlation Bounds for Circuits Between AC0 and TC0

Authors: Vinayak M. Kumar

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We initiate the study of generalized AC⁰ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input bits), which we denote GC⁰(k). The gate set of this class includes biased LTFs like the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation between AC⁰ and TC⁰. We establish a tight multi-switching lemma for GC⁰(k) circuits, which bounds the probability that several depth-2 GC⁰(k) circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s AC⁰ circuits lifts to depth-d size-s^{.99} GC⁰(.01 log s) circuits with no loss in parameters (other than hidden constants). Our result has the following applications: - Size-2^Ω(n^{1/d}) depth-d GC⁰(Ω(n^{1/d})) circuits do not correlate with parity (extending a result of Håstad (SICOMP, 2014)). - Size-n^Ω(log n) GC⁰(Ω(log² n)) circuits with n^{.249} arbitrary threshold gates or n^{.499} arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). - There is a seed length O((log m)^{d-1}log(m/ε)log log(m)) pseudorandom generator against size-m depth-d GC⁰(log m) circuits, matching the AC⁰ lower bound of Håstad up to a log log m factor (extending a result of Lyu (CCC, 2022)). - Size-m GC⁰(log m) circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).

Cite as

Vinayak M. Kumar. Tight Correlation Bounds for Circuits Between AC0 and TC0. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 18:1-18:40, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kumar:LIPIcs.CCC.2023.18,
  author =	{Kumar, Vinayak M.},
  title =	{{Tight Correlation Bounds for Circuits Between AC0 and TC0}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{18:1--18:40},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.18},
  URN =		{urn:nbn:de:0030-drops-182885},
  doi =		{10.4230/LIPIcs.CCC.2023.18},
  annote =	{Keywords: AC⁰, TC⁰, Switching Lemma, Lower Bounds, Correlation Bounds, Circuit Complexity}
}
Document
Pseudobinomiality of the Sticky Random Walk

Authors: Venkatesan Guruswami and Vinayak M. Kumar

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number M of marked vertices visited in a long n-step random walk strongly concentrates around the expected n/2 value. Surprisingly, it was recently shown that the parity of M also has exponentially small bias. Is there a common unification of these results? What other statistics about M resemble the binomial distribution (the Hamming weight of a random n-bit string)? To gain insight into such questions, we analyze a simpler model called the sticky random walk. This model is a natural stepping stone towards understanding expander random walks, and we also show that it is a necessary step. The sticky random walk starts with a random bit and then each subsequent bit independently equals the previous bit with probability (1+λ)/2. Here λ is the proxy for the expander’s (second largest) eigenvalue. Using Krawtchouk expansion of functions, we derive several probabilistic results about the sticky random walk. We show an asymptotically tight Θ(λ) bound on the total variation distance between the (Hamming weight of the) sticky walk and the binomial distribution. We prove that the correlation between the majority and parity bit of the sticky walk is bounded by O(n^{-1/4}). This lends hope to unifying Chernoff bounds and parity concentration, as well as establishing other interesting statistical properties, of expander random walks.

Cite as

Venkatesan Guruswami and Vinayak M. Kumar. Pseudobinomiality of the Sticky Random Walk. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 48:1-48:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.ITCS.2021.48,
  author =	{Guruswami, Venkatesan and Kumar, Vinayak M.},
  title =	{{Pseudobinomiality of the Sticky Random Walk}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{48:1--48:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.48},
  URN =		{urn:nbn:de:0030-drops-135870},
  doi =		{10.4230/LIPIcs.ITCS.2021.48},
  annote =	{Keywords: Expander Graphs, Fourier analysis, Markov Chains, Pseudorandomness, Random Walks}
}
  • Refine by Author
  • 2 Kumar, Vinayak M.
  • 1 Goldberg, Guy
  • 1 Guruswami, Venkatesan
  • 1 Ito, Takehiro
  • 1 Kawahara, Jun
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Discrete space search
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Error-correcting codes
  • 1 Theory of computation → Expander graphs and randomness extractors
  • 1 Theory of computation → Pseudorandomness and derandomization
  • Show More...

  • Refine by Keyword
  • 1 AC⁰
  • 1 Benckmark dataset
  • 1 Circuit Complexity
  • 1 Combinatorial reconfiguration
  • 1 Correlation Bounds
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021
  • 1 2023