9 Search Results for "Lazić, Ranko"


Document
Invited Talk
Branching in Well-Structured Transition Systems (Invited Talk)

Authors: Sylvain Schmitz

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
The framework of well-structured transition systems has been highly successful in providing generic algorithms to show the decidability of verification problems for infinite-state systems. In some of these applications, the executions in the system at hand are actually trees, and need to be "lifted" to executions over sets of configurations in order to fit in the framework. The downside of this approach is that we might lose precision when analysing the computational complexity of the algorithms, compared to reasoning over branching executions.

Cite as

Sylvain Schmitz. Branching in Well-Structured Transition Systems (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{schmitz:LIPIcs.CSL.2021.3,
  author =	{Schmitz, Sylvain},
  title =	{{Branching in Well-Structured Transition Systems}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.3},
  URN =		{urn:nbn:de:0030-drops-134377},
  doi =		{10.4230/LIPIcs.CSL.2021.3},
  annote =	{Keywords: fast-growing complexity, well-structured transition system}
}
Document
Reachability in Fixed Dimension Vector Addition Systems with States

Authors: Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability. We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip},
  title =	{{Reachability in Fixed Dimension Vector Addition Systems with States}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48},
  URN =		{urn:nbn:de:0030-drops-128605},
  doi =		{10.4230/LIPIcs.CONCUR.2020.48},
  annote =	{Keywords: reachability problem, vector addition systems, Petri nets}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Complexity of Bounded Context Switching with Dynamic Thread Creation

Authors: Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Dynamic networks of concurrent pushdown systems (DCPS) are a theoretical model for multi-threaded recursive programs with shared global state and dynamical creation of threads. The (global) state reachability problem for DCPS is undecidable in general, but Atig et al. (2009) showed that it becomes decidable, and is in 2EXPSPACE, when each thread is restricted to a fixed number of context switches. The best known lower bound for the problem is EXPSPACE-hard and this lower bound follows already when each thread is a finite-state machine and runs atomically to completion (i.e., does not switch contexts). In this paper, we close the gap by showing that state reachability is 2EXPSPACE-hard already with only one context switch. Interestingly, state reachability analysis is in EXPSPACE both for pushdown threads without context switches as well as for finite-state threads with arbitrary context switches. Thus, recursive threads together with a single context switch provide an exponential advantage. Our proof techniques are of independent interest for 2EXPSPACE-hardness results. We introduce transducer-defined Petri nets, a succinct representation for Petri nets, and show coverability is 2EXPSPACE-hard for this model. To show 2EXPSPACE-hardness, we present a modified version of Lipton’s simulation of counter machines by Petri nets, where the net programs can make explicit recursive procedure calls up to a bounded depth.

Cite as

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The Complexity of Bounded Context Switching with Dynamic Thread Creation. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 111:1-111:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.ICALP.2020.111,
  author =	{Baumann, Pascal and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{The Complexity of Bounded Context Switching with Dynamic Thread Creation}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{111:1--111:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.111},
  URN =		{urn:nbn:de:0030-drops-125187},
  doi =		{10.4230/LIPIcs.ICALP.2020.111},
  annote =	{Keywords: Dynamic thread creation, Bounded context switching, Asynchronous Programs, Safety verification, State reachability, Petri nets, Complexity, Succinctness, Counter Programs}
}
Document
Invited Talk
Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk)

Authors: Ranko Lazić

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
Studying one-dimensional grammar vector addition systems has long been advocated by Alain Finkel. In this presentation, we shall see how research on those systems has led to the recent breakthrough tower lower bound for the reachability problem on vector addition systems, obtained by Czerwiński et al. In fact, we shall look at how appropriate modifications of an underlying technical construction can lead to counter-examples to several conjectures on one-dimensional grammar vector addition systems, fixed-dimensional vector addition systems, and fixed-dimensional flat vector addition systems.

Cite as

Ranko Lazić. Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems (Invited Talk). In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lazic:LIPIcs.FSTTCS.2019.3,
  author =	{Lazi\'{c}, Ranko},
  title =	{{Finkel Was Right: Counter-Examples to Several Conjectures on Variants of Vector Addition Systems}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.3},
  URN =		{urn:nbn:de:0030-drops-115653},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.3},
  annote =	{Keywords: Petri nets, vector addition systems, reachability}
}
Document
Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Authors: Paweł Parys

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms were introduced; none of them is easy to understand. Moreover, it turns out that in practice they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very simple, exponential in the worst case, and the fastest in practice. We combine these two approaches: we propose a small modification of Zielonka’s algorithm, which ensures that the running time is at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while reducing the worst-case complexity on difficult inputs.

Cite as

Paweł Parys. Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{parys:LIPIcs.MFCS.2019.10,
  author =	{Parys, Pawe{\l}},
  title =	{{Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.10},
  URN =		{urn:nbn:de:0030-drops-109543},
  doi =		{10.4230/LIPIcs.MFCS.2019.10},
  annote =	{Keywords: Parity games, Zielonka’s algorithm, quasi-polynomial time}
}
Document
When is Containment Decidable for Probabilistic Automata?

Authors: Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and James Worrell

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous.

Cite as

Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and James Worrell. When is Containment Decidable for Probabilistic Automata?. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 121:1-121:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{daviaud_et_al:LIPIcs.ICALP.2018.121,
  author =	{Daviaud, Laure and Jurdzinski, Marcin and Lazic, Ranko and Mazowiecki, Filip and P\'{e}rez, Guillermo A. and Worrell, James},
  title =	{{When is Containment Decidable for Probabilistic Automata?}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{121:1--121:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.121},
  URN =		{urn:nbn:de:0030-drops-91251},
  doi =		{10.4230/LIPIcs.ICALP.2018.121},
  annote =	{Keywords: Probabilistic automata, Containment, Emptiness, Ambiguity}
}
Document
Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One

Authors: Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
Whether the reachability problem for branching vector addition systems, or equivalently the provability problem for multiplicative exponential linear logic, is decidable has been a long-standing open question. The one-dimensional case is a generalisation of the extensively studied one-counter nets, and it was recently established polynomial-time complete provided counter updates are given in unary. Our main contribution is to determine the complexity when the encoding is binary: polynomial-space complete.

Cite as

Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 119:1-119:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICALP.2017.119,
  author =	{Figueira, Diego and Lazic, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip and Sutre, Gr\'{e}goire},
  title =	{{Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{119:1--119:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.119},
  URN =		{urn:nbn:de:0030-drops-74374},
  doi =		{10.4230/LIPIcs.ICALP.2017.119},
  annote =	{Keywords: branching vector addition systems, reachability problem}
}
Document
A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One

Authors: Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
Branching VASS (BVASS) generalise vector addition systems with states by allowing for special branching transitions that can non-deterministically distribute a counter value between two control states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether a given configuration is the root of a reachability tree. This paper shows P-completeness of reachability in BVASS in dimension one, the first decidability result for reachability in a subclass of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in dimension one are P-complete as well.

Cite as

Stefan Göller, Christoph Haase, Ranko Lazic, and Patrick Totzke. A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 105:1-105:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.ICALP.2016.105,
  author =	{G\"{o}ller, Stefan and Haase, Christoph and Lazic, Ranko and Totzke, Patrick},
  title =	{{A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{105:1--105:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.105},
  URN =		{urn:nbn:de:0030-drops-62409},
  doi =		{10.4230/LIPIcs.ICALP.2016.105},
  annote =	{Keywords: branching vector addition systems, reachability, coverability, boundedness}
}
Document
The Covering and Boundedness Problems for Branching Vector Addition Systems

Authors: Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
The covering and boundedness problems for branching vector addition systems are shown complete for doubly-exponential time.

Cite as

Stéphane Demri, Marcin Jurdzinski, Oded Lachish, and Ranko Lazic. The Covering and Boundedness Problems for Branching Vector Addition Systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 181-192, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{demri_et_al:LIPIcs.FSTTCS.2009.2317,
  author =	{Demri, St\'{e}phane and Jurdzinski, Marcin and Lachish, Oded and Lazic, Ranko},
  title =	{{The Covering and Boundedness Problems for Branching Vector Addition Systems}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{181--192},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2317},
  URN =		{urn:nbn:de:0030-drops-23173},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2317},
  annote =	{Keywords: Vector addition systems, Petri nets, covering, boundedness, computational complexity}
}
  • Refine by Author
  • 4 Lazic, Ranko
  • 3 Mazowiecki, Filip
  • 2 Jurdzinski, Marcin
  • 2 Lazić, Ranko
  • 2 Leroux, Jérôme
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Verification by model checking
  • 2 Theory of computation → Concurrency
  • 2 Theory of computation → Program reasoning
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Computational complexity and cryptography
  • Show More...

  • Refine by Keyword
  • 4 Petri nets
  • 2 boundedness
  • 2 branching vector addition systems
  • 2 reachability
  • 2 reachability problem
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 2 2019
  • 2 2020
  • 1 2009
  • 1 2016
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail