2 Search Results for "Li, Ang"


Document
FastMapSVM for Predicting CSP Satisfiability

Authors: Kexin Zheng, Ang Li, Han Zhang, and T. K. Satish Kumar

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
Recognizing the satisfiability of Constraint Satisfaction Problems (CSPs) is NP-hard. Although several Machine Learning (ML) approaches have attempted this task by casting it as a binary classification problem, they have had only limited success for a variety of challenging reasons. First, the NP-hardness of the task does not make it amenable to straightforward approaches. Second, CSPs come in various forms and sizes while many ML algorithms impose the same form and size on their training and test instances. Third, the representation of a CSP instance is not unique since the variables and their domain values are unordered. In this paper, we propose FastMapSVM, a recently developed ML framework that leverages a distance function between pairs of objects. We define a novel distance function between two CSP instances using maxflow computations. This distance function is well defined for CSPs of different sizes. It is also invariant to the ordering on the variables and their domain values. Therefore, our framework has broader applicability compared to other approaches. We discuss various representational and combinatorial advantages of FastMapSVM. Through experiments, we also show that it outperforms other state-of-the-art ML approaches.

Cite as

Kexin Zheng, Ang Li, Han Zhang, and T. K. Satish Kumar. FastMapSVM for Predicting CSP Satisfiability. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zheng_et_al:LIPIcs.CP.2023.40,
  author =	{Zheng, Kexin and Li, Ang and Zhang, Han and Kumar, T. K. Satish},
  title =	{{FastMapSVM for Predicting CSP Satisfiability}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.40},
  URN =		{urn:nbn:de:0030-drops-190775},
  doi =		{10.4230/LIPIcs.CP.2023.40},
  annote =	{Keywords: Constraint Satisfaction Problems, Machine Learning, FastMapSVM}
}
Document
Invited Talk
SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures (Invited Talk)

Authors: Antonino Tumeo, Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Ang Li, and Joseph Manzano

Published in: OASIcs, Volume 100, 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)


Abstract
Modern data analysis applications are complex workflows composed of algorithms with diverse behaviors. They may include digital signal processing, data filtering, reduction, compression, graph algorithms, and machine learning. Their performance is highly dependent on the volume, the velocity, and the structure of the data. They are used in many different domains (from small, embedded devices, to large-scale, high-performance computing systems) but in all cases they need to provide answers with very low latency to enable real-time decision making and autonomy. Coarse-grained reconfigurable arrays (CGRAs), i.e., architectures composed of functional units able to perform complex operations interconnected through a network-on-chip and configure the datapath to map complex kernels, are a promising platform to accelerate these applications thanks to their adaptability. They provide higher flexibility than application-specific integrated circuits (ASICs) while offering increased energy efficiency and faster reconfiguration speed with respect to field-programmable gate arrays (FPGAs). However, designing and specializing CGRAs requires significant efforts. The inherent flexibility of these devices makes the application mapping process equally important to the hardware design generation. To obtain efficient systems, approaches that simultaneously considers software and hardware optimizations are necessary. In this paper, we discuss the Software Defined Architectures for Data Analytics (SO(DA)²) toolchain, an end-to-end hardware/software codesign framework to generate custom reconfigurable architectures for data analytics applications. (SO(DA)²) is composed of a high-level compiler (SODA-OPT) and a hardware generator (OpenCGRA) and can automatically explore and generate optimal CGRA designs starting from high-level programming frameworks. SO(DA)² considers partial dynamic reconfiguration as key element of the system design. We discuss the various elements of the framework and demonstrate the flow on the case study of a partial dynamic reconfigurable CGRA design for data streaming applications.

Cite as

Antonino Tumeo, Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye, Cheng Tan, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Ang Li, and Joseph Manzano. SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures (Invited Talk). In 13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022). Open Access Series in Informatics (OASIcs), Volume 100, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{tumeo_et_al:OASIcs.PARMA-DITAM.2022.1,
  author =	{Tumeo, Antonino and Agostini, Nicolas Bohm and Curzel, Serena and Limaye, Ankur and Tan, Cheng and Amatya, Vinay and Minutoli, Marco and Castellana, Vito Giovanni and Li, Ang and Manzano, Joseph},
  title =	{{SO(DA)^2: End-to-end Generation of Specialized Reconfigurable Architectures}},
  booktitle =	{13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2022)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-231-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{100},
  editor =	{Palumbo, Francesca and Bispo, Jo\~{a}o and Cherubin, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2022.1},
  URN =		{urn:nbn:de:0030-drops-161175},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2022.1},
  annote =	{Keywords: Reconfigurable architectures, data analytics}
}
  • Refine by Author
  • 2 Li, Ang
  • 1 Agostini, Nicolas Bohm
  • 1 Amatya, Vinay
  • 1 Castellana, Vito Giovanni
  • 1 Curzel, Serena
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Reconfigurable computing
  • 1 Computing methodologies → Machine learning

  • Refine by Keyword
  • 1 Constraint Satisfaction Problems
  • 1 FastMapSVM
  • 1 Machine Learning
  • 1 Reconfigurable architectures
  • 1 data analytics

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail