Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, and Chee Yap. Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 69:1-69:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{mantas_et_al:LIPIcs.SoCG.2022.69, author = {Mantas, Ioannis and Papadopoulou, Evanthia and Suderland, Martin and Yap, Chee}, title = {{Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {69:1--69:6}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.69}, URN = {urn:nbn:de:0030-drops-160773}, doi = {10.4230/LIPIcs.SoCG.2022.69}, annote = {Keywords: Fermat point, geometric median, Weber point, Fermat distance, sum of distances, n-ellipse, multifocal ellipse, min-sum Voronoi diagram, cluster Voronoi diagram} }
Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)
Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland. The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{alegria_et_al:LIPIcs.ESA.2021.5, author = {Alegr{\'\i}a, Carlos and Mantas, Ioannis and Papadopoulou, Evanthia and Savi\'{c}, Marko and Schrezenmaier, Hendrik and Seara, Carlos and Suderland, Martin}, title = {{The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {5:1--5:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.5}, URN = {urn:nbn:de:0030-drops-145865}, doi = {10.4230/LIPIcs.ESA.2021.5}, annote = {Keywords: rotating rays, Voronoi diagram, oriented angular distance, Brocard angle, floodlight illumination, coverage problems, art gallery problems} }
Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)
Kolja Junginger, Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, and Chee Yap. Certified Approximation Algorithms for the Fermat Point and n-Ellipses. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 54:1-54:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{junginger_et_al:LIPIcs.ESA.2021.54, author = {Junginger, Kolja and Mantas, Ioannis and Papadopoulou, Evanthia and Suderland, Martin and Yap, Chee}, title = {{Certified Approximation Algorithms for the Fermat Point and n-Ellipses}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {54:1--54:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.54}, URN = {urn:nbn:de:0030-drops-146359}, doi = {10.4230/LIPIcs.ESA.2021.54}, annote = {Keywords: Fermat point, n-ellipse, subdivision, approximation, certified, algorithms} }