3 Search Results for "Martins, Francisco"


Document
Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance demands. This trend marks a shift from their traditionally simple, deterministic designs to more complex and inherently less predictable architectures. While shared resource contention is well-studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs introduces unique challenges and characteristics that existing research has not fully explored. In this paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based platforms, aiming to identify the sources of contention on systems typically lacking these problems. We empirically demonstrate substantial contention effects across different MCU architectures (i.e., from single- to multi-core configurations), highlighting significant application slowdowns. Notably, we observe that slowdowns can reach several orders of magnitude, with the most extreme cases showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we propose and evaluate muTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA) and TPA-based runtime control specifically tailored to MCUs. muTPArtc is an MCU-specialized TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications' progress, detect, and mitigate timing violations. Our results demonstrate that muTPArtc effectively manages performance degradation due to interference, requiring only minimal modifications to the build pipeline and no changes to the source code of the target application, while incurring minor overheads.

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.ECRTS.2024.5,
  author =	{Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
  title =	{{Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.5},
  URN =		{urn:nbn:de:0030-drops-203088},
  doi =		{10.4230/LIPIcs.ECRTS.2024.5},
  annote =	{Keywords: multi-core microcontrollers, shared resources contention, progress-aware regulation}
}
Document
The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs

Authors: Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Following the needs of industrial applications, virtualization has emerged as one of the most effective approaches for the consolidation of mixed-criticality systems while meeting tight constraints in terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked. Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/O devices allocated to virtual machines that run on primary cores, yielding full control and responsibility over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm for the holistic management of heterogeneous platforms. The model generalizes the features of real-time static partitioning hypervisors to enable the execution of virtual machines on processors with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor ensures temporal and spatial isolation between virtual machines by integrating and leveraging a variety of hardware and software protection mechanisms. The presented approach not only expands the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time performance for mixed-criticality applications. A full open-source reference implementation of the Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the solution, including enabling the seamless launch of virtual machines on different ISAs and extending spatial/temporal isolation to heterogenous cores with enhanced regulation policies.

Cite as

Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque. The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 7:1-7:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ottaviano_et_al:LIPIcs.ECRTS.2024.7,
  author =	{Ottaviano, Daniele and Ciraolo, Francesco and Mancuso, Renato and Cinque, Marcello},
  title =	{{The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{7:1--7:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.7},
  URN =		{urn:nbn:de:0030-drops-203107},
  doi =		{10.4230/LIPIcs.ECRTS.2024.7},
  annote =	{Keywords: Mixed-Criticality, Embedded Virtualization, Real-Time Systems, MPSoCs}
}
Document
MiKO---Mikado Koncurrent Objects

Authors: Francisco Martins, Liliana Salvador, Vasco T. Vasconcelos, and Luís Lopes

Published in: Dagstuhl Seminar Proceedings, Volume 5081, Foundations of Global Computing (2006)


Abstract
The motivation for the Mikado migration model is to provide programming constructs for controlling code mobility that are as independent as possible from the particular programming language used to program the code. The main idea is to regard a domain (or site, or locality), where mobile code may enter or exit, as a membrane enclosing running processes, and offering services that have to be called for entering or exiting the domain. MiKO---Mikado Koncurrent Objects is a particular instance of this model, where the membrane is explicitly split in two parts: the methods defining the interface, and a process part describing the data for, and the behavior of, the interface. The talk presents the syntax, operational semantics, and type system of MiKO, together with an example. It concludes by briefly mentioning the implementation of a language based on the calculus.

Cite as

Francisco Martins, Liliana Salvador, Vasco T. Vasconcelos, and Luís Lopes. MiKO---Mikado Koncurrent Objects. In Foundations of Global Computing. Dagstuhl Seminar Proceedings, Volume 5081, pp. 1-43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{martins_et_al:DagSemProc.05081.6,
  author =	{Martins, Francisco and Salvador, Liliana and Vasconcelos, Vasco T. and Lopes, Lu{\'\i}s},
  title =	{{MiKO---Mikado Koncurrent Objects}},
  booktitle =	{Foundations of Global Computing},
  pages =	{1--43},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5081},
  editor =	{Jos\'{e} Luiz Fiadeiro and Ugo Montanari and Martin Wirsing},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05081.6},
  URN =		{urn:nbn:de:0030-drops-3014},
  doi =		{10.4230/DagSemProc.05081.6},
  annote =	{Keywords: Global computing, code migration, administrative domains, process calculus}
}
  • Refine by Author
  • 2 Mancuso, Renato
  • 1 Chen, Weifan
  • 1 Cinque, Marcello
  • 1 Ciraolo, Francesco
  • 1 Lopes, Luís
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Real-time system architecture
  • 1 Computer systems organization → Real-time systems

  • Refine by Keyword
  • 1 Embedded Virtualization
  • 1 Global computing
  • 1 MPSoCs
  • 1 Mixed-Criticality
  • 1 Real-Time Systems
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2006