2 Search Results for "Maystre, Gilbert"


Document
Further Collapses in TFNP

Authors: Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We show EOPL = PLS ∩ PPAD. Here the class EOPL consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubáček and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse CLS = PLS ∩ PPAD by Fearnley et al. (STOC 2021). We also prove a companion result SOPL = PLS ∩ PPADS, where SOPL is the class associated with the Sink-of-Potential-Line problem.

Cite as

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao. Further Collapses in TFNP. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 33:1-33:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2022.33,
  author =	{G\"{o}\"{o}s, Mika and Hollender, Alexandros and Jain, Siddhartha and Maystre, Gilbert and Pires, William and Robere, Robert and Tao, Ran},
  title =	{{Further Collapses in TFNP}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.33},
  URN =		{urn:nbn:de:0030-drops-165954},
  doi =		{10.4230/LIPIcs.CCC.2022.33},
  annote =	{Keywords: TFNP, PPAD, PLS, EOPL}
}
Document
A Majority Lemma for Randomised Query Complexity

Authors: Mika Göös and Gilbert Maystre

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We show that computing the majority of n copies of a boolean function g has randomised query complexity R(Maj∘gⁿ) = Θ(n⋅R ̅_{1/n}(g)). In fact, we show that to obtain a similar result for any composed function f∘gⁿ, it suffices to prove a sufficiently strong form of the result only in the special case g = GapOr.

Cite as

Mika Göös and Gilbert Maystre. A Majority Lemma for Randomised Query Complexity. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 18:1-18:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2021.18,
  author =	{G\"{o}\"{o}s, Mika and Maystre, Gilbert},
  title =	{{A Majority Lemma for Randomised Query Complexity}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.18},
  URN =		{urn:nbn:de:0030-drops-142922},
  doi =		{10.4230/LIPIcs.CCC.2021.18},
  annote =	{Keywords: Query Complexity, Composition, Majority}
}
  • Refine by Author
  • 2 Göös, Mika
  • 2 Maystre, Gilbert
  • 1 Hollender, Alexandros
  • 1 Jain, Siddhartha
  • 1 Pires, William
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Problems, reductions and completeness

  • Refine by Keyword
  • 1 Composition
  • 1 EOPL
  • 1 Majority
  • 1 PLS
  • 1 PPAD
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail