4 Search Results for "Micek, Piotr"


Document
Weak Coloring Numbers of Intersection Graphs

Authors: Zdeněk Dvořák, Jakub Pekárek, Torsten Ueckerdt, and Yelena Yuditsky

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly) reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in structural and algorithmic graph theory. Recently, Dvořák, McCarty, and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in ℝ^d, such as homothets of a compact convex object, or comparable axis-aligned boxes. In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).

Cite as

Zdeněk Dvořák, Jakub Pekárek, Torsten Ueckerdt, and Yelena Yuditsky. Weak Coloring Numbers of Intersection Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.SoCG.2022.39,
  author =	{Dvo\v{r}\'{a}k, Zden\v{e}k and Pek\'{a}rek, Jakub and Ueckerdt, Torsten and Yuditsky, Yelena},
  title =	{{Weak Coloring Numbers of Intersection Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{39:1--39:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.39},
  URN =		{urn:nbn:de:0030-drops-160477},
  doi =		{10.4230/LIPIcs.SoCG.2022.39},
  annote =	{Keywords: geometric intersection graphs, weak and strong coloring numbers}
}
Document
Reconfiguring Independent Sets on Interval Graphs

Authors: Marcin Briański, Stefan Felsner, Jędrzej Hodor, and Piotr Micek

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study reconfiguration of independent sets in interval graphs under the token sliding rule. We show that if two independent sets of size k are reconfigurable in an n-vertex interval graph, then there is a reconfiguration sequence of length 𝒪(k⋅ n²). We also provide a construction in which the shortest reconfiguration sequence is of length Ω(k²⋅ n). As a counterpart to these results, we also establish that Independent Set Reconfiguration is PSPACE-hard on incomparability graphs, of which interval graphs are a special case.

Cite as

Marcin Briański, Stefan Felsner, Jędrzej Hodor, and Piotr Micek. Reconfiguring Independent Sets on Interval Graphs. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brianski_et_al:LIPIcs.MFCS.2021.23,
  author =	{Bria\'{n}ski, Marcin and Felsner, Stefan and Hodor, J\k{e}drzej and Micek, Piotr},
  title =	{{Reconfiguring Independent Sets on Interval Graphs}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.23},
  URN =		{urn:nbn:de:0030-drops-144633},
  doi =		{10.4230/LIPIcs.MFCS.2021.23},
  annote =	{Keywords: reconfiguration, independent sets, interval graphs}
}
Document
Dual Circumference and Collinear Sets

Authors: Vida Dujmović and Pat Morin

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We show that, if an n-vertex triangulation T of maximum degree Delta has a dual that contains a cycle of length l, then T has a non-crossing straight-line drawing in which some set, called a collinear set, of Omega(l/Delta^4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in 3-regular 3-connected graphs, this implies that every n-vertex planar graph of maximum degree Delta has a collinear set of size Omega(n^{0.8}/Delta^4). Very recently, Dujmović et al. (SODA 2019) showed that, if S is a collinear set in a triangulation T then, for any point set X subset R^2 with |X|=|S|, T has a non-crossing straight-line drawing in which the vertices of S are drawn on the points in X. Because of this, collinear sets have numerous applications in graph drawing and related areas.

Cite as

Vida Dujmović and Pat Morin. Dual Circumference and Collinear Sets. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dujmovic_et_al:LIPIcs.SoCG.2019.29,
  author =	{Dujmovi\'{c}, Vida and Morin, Pat},
  title =	{{Dual Circumference and Collinear Sets}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.29},
  URN =		{urn:nbn:de:0030-drops-104338},
  doi =		{10.4230/LIPIcs.SoCG.2019.29},
  annote =	{Keywords: Planar graphs, collinear sets, untangling, column planarity, universal point subsets, partial simultaneous geometric drawings}
}
Document
On-line Coloring between Two Lines

Authors: Stefan Felsner, Piotr Micek, and Torsten Ueckerdt

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
We study on-line colorings of certain graphs given as intersection graphs of objects "between two lines", i.e., there is a pair of horizontal lines such that each object of the representation is a connected set contained in the strip between the lines and touches both. Some of the graph classes admitting such a representation are permutation graphs (segments), interval graphs (axis-aligned rectangles), trapezoid graphs (trapezoids) and cocomparability graphs (simple curves). We present an on-line algorithm coloring graphs given by convex sets between two lines that uses O(w^3) colors on graphs with maximum clique size w. In contrast intersection graphs of segments attached to a single line may force any on-line coloring algorithm to use an arbitrary number of colors even when w=2. The left-of relation makes the complement of intersection graphs of objects between two lines into a poset. As an aside we discuss the relation of the class C of posets obtained from convex sets between two lines with some other classes of posets: all 2-dimensional posets and all posets of height 2 are in C but there is a 3-dimensional poset of height 3 that does not belong to C. We also show that the on-line coloring problem for curves between two lines is as hard as the on-line chain partition problem for arbitrary posets.

Cite as

Stefan Felsner, Piotr Micek, and Torsten Ueckerdt. On-line Coloring between Two Lines. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 630-641, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{felsner_et_al:LIPIcs.SOCG.2015.630,
  author =	{Felsner, Stefan and Micek, Piotr and Ueckerdt, Torsten},
  title =	{{On-line Coloring between Two Lines}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{630--641},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.630},
  URN =		{urn:nbn:de:0030-drops-50915},
  doi =		{10.4230/LIPIcs.SOCG.2015.630},
  annote =	{Keywords: intersection graphs, cocomparability graphs, on-line coloring}
}
  • Refine by Author
  • 2 Felsner, Stefan
  • 2 Micek, Piotr
  • 2 Ueckerdt, Torsten
  • 1 Briański, Marcin
  • 1 Dujmović, Vida
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph theory
  • 1 Human-centered computing → Graph drawings
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Extremal graph theory
  • 1 Mathematics of computing → Graph coloring

  • Refine by Keyword
  • 1 Planar graphs
  • 1 cocomparability graphs
  • 1 collinear sets
  • 1 column planarity
  • 1 geometric intersection graphs
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2015
  • 1 2019
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail