Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Ulrich Bauer and Fabian Roll. Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{bauer_et_al:LIPIcs.SoCG.2024.15, author = {Bauer, Ulrich and Roll, Fabian}, title = {{Wrapping Cycles in Delaunay Complexes: Bridging Persistent Homology and Discrete Morse Theory}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {15:1--15:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.15}, URN = {urn:nbn:de:0030-drops-199600}, doi = {10.4230/LIPIcs.SoCG.2024.15}, annote = {Keywords: persistent homology, discrete Morse theory, apparent pairs, Wrap complex, lexicographic optimal chains, shape reconstruction} }
Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Hubert Wagner. Slice, Simplify and Stitch: Topology-Preserving Simplification Scheme for Massive Voxel Data. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 60:1-60:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{wagner:LIPIcs.SoCG.2023.60, author = {Wagner, Hubert}, title = {{Slice, Simplify and Stitch: Topology-Preserving Simplification Scheme for Massive Voxel Data}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {60:1--60:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.60}, URN = {urn:nbn:de:0030-drops-179107}, doi = {10.4230/LIPIcs.SoCG.2023.60}, annote = {Keywords: Computational topology, topological data analysis, topological image analysis, persistent homology, persistence diagram, discrete Morse theory, algorithm engineering, implementation, voxel data, volume data, image data} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Tamal K. Dey, Michał Lipiński, Marian Mrozek, and Ryan Slechta. Tracking Dynamical Features via Continuation and Persistence. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{dey_et_al:LIPIcs.SoCG.2022.35, author = {Dey, Tamal K. and Lipi\'{n}ski, Micha{\l} and Mrozek, Marian and Slechta, Ryan}, title = {{Tracking Dynamical Features via Continuation and Persistence}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {35:1--35:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.35}, URN = {urn:nbn:de:0030-drops-160439}, doi = {10.4230/LIPIcs.SoCG.2022.35}, annote = {Keywords: combinatorial dynamical systems, continuation, index pair, Conley index, persistent homology} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Tamal K. Dey, Marian Mrozek, and Ryan Slechta. Persistence of the Conley Index in Combinatorial Dynamical Systems. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{dey_et_al:LIPIcs.SoCG.2020.37, author = {Dey, Tamal K. and Mrozek, Marian and Slechta, Ryan}, title = {{Persistence of the Conley Index in Combinatorial Dynamical Systems}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {37:1--37:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.37}, URN = {urn:nbn:de:0030-drops-121958}, doi = {10.4230/LIPIcs.SoCG.2020.37}, annote = {Keywords: Dynamical systems, combinatorial vector field, multivector, Conley index, persistence} }
Feedback for Dagstuhl Publishing