5 Search Results for "Paten, Benedict J."


Document
A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs

Authors: Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Elastic Degenerate (ED) strings and Elastic Founder (EF) graphs are two versions of acyclic components of pangenomes. Both ED strings and EF graphs (which we collectively name variable strings) extend the well-known notion of indeterminate string. Recent work has extensively investigated algorithmic tasks over these structures, and over several other variable strings notions that they generalise. Among such tasks, the basic operation of matching a pattern into a text, which can serve as a toolkit for many pangenomic data analyses using these data structures, deserves special attention. In this paper we: (1) highlight a clear taxonomy within both ED strings and EF graphs ranging through variable strings of all types, from the linear string up to the most general one; (2) investigate the problem PvarT(X,Y) of matching a solid or variable pattern of type X into a variable text of type Y; (3) using as a reference the quadratic conditional lower bounds that are known for PvarT(solid,ED) and PvarT(solid,EF), for all possible types of variable strings X and Y we either prove the quadratic conditional lower bound for PvarT(X,Y), or provide non-trivial, often sub-quadratic, upper bounds, also exploiting the above-mentioned taxonomy.

Cite as

Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti. A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ascone_et_al:LIPIcs.WABI.2024.14,
  author =	{Ascone, Rocco and Bernardini, Giulia and Conte, Alessio and Equi, Massimo and Gabory, Esteban and Grossi, Roberto and Pisanti, Nadia},
  title =	{{A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.14},
  URN =		{urn:nbn:de:0030-drops-206586},
  doi =		{10.4230/LIPIcs.WABI.2024.14},
  annote =	{Keywords: Pangenomics, pattern matching, degenerate string, founder graph, fine-grained complexity}
}
Document
A*PA2: Up to 19× Faster Exact Global Alignment

Authors: Ragnar Groot Koerkamp

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Motivation. Pairwise alignment is at the core of computational biology. Most commonly used exact methods are either based on O(ns) band doubling or O(n+s²) diagonal transition, where n is the sequence length and s the number of errors. However, as the length of sequences has grown, these exact methods are often replaced by approximate methods based on e.g. seed-and-extend and heuristics to bound the computed region. We would like to develop an exact method that matches the performance of these approximate methods. Recently, Astarix introduced the A* shortest path algorithm with the seed heuristic for exact sequence-to-graph alignment. A*PA adapted and improved this for pairwise sequence alignment and achieves near-linear runtime when divergence (error rate) is low, at the cost of being very slow when divergence is high. Methods. We introduce A*PA2, an exact global pairwise aligner with respect to edit distance. The goal of A*PA2 is to unify the near-linear runtime of A*PA on similar sequences with the efficiency of dynamic programming (DP) based methods. Like Edlib, A*PA2 uses Ukkonen’s band doubling in combination with Myers' bitpacking. A*PA2 1) uses large block sizes inspired by Block Aligner, 2) extends this with SIMD (single instruction, multiple data), 3) introduces a new profile for efficient computations, 4) introduces a new optimistic technique for traceback based on diagonal transition, 5) avoids recomputation of states where possible, and 6) applies the heuristics developed in A*PA and improves them using pre-pruning. Results. With the first 4 engineering optimizations, A*PA2-simple has complexity O(ns) and is 6× to 8× faster than Edlib for sequences ≥ 10 kbp. A*PA2-full also includes the heuristic and is often near-linear in practice for sequences with small divergence. The average runtime of A*PA2 is 19× faster than the exact aligners BiWFA and Edlib on >500 kbp long ONT (Oxford Nanopore Technologies) reads of a human genome having 6% divergence on average. On shorter ONT reads of 11% average divergence the speedup is 5.6× (avg. length 11 kbp) and 0.81× (avg. length 800 bp). On all tested datasets, A*PA2 is competitive with or faster than approximate methods.

Cite as

Ragnar Groot Koerkamp. A*PA2: Up to 19× Faster Exact Global Alignment. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grootkoerkamp:LIPIcs.WABI.2024.17,
  author =	{Groot Koerkamp, Ragnar},
  title =	{{A*PA2: Up to 19× Faster Exact Global Alignment}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.17},
  URN =		{urn:nbn:de:0030-drops-206610},
  doi =		{10.4230/LIPIcs.WABI.2024.17},
  annote =	{Keywords: Edit distance, Pairwise alignment, A*, Shortest path, Dynamic programming}
}
Document
AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction

Authors: Adam Cicherski, Anna Lisiecka, and Norbert Dojer

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free approach that allows to construct pangenome graphs using significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely available at https://github.com/AdamCicherski/AlfaPang.

Cite as

Adam Cicherski, Anna Lisiecka, and Norbert Dojer. AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cicherski_et_al:LIPIcs.WABI.2024.23,
  author =	{Cicherski, Adam and Lisiecka, Anna and Dojer, Norbert},
  title =	{{AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.23},
  URN =		{urn:nbn:de:0030-drops-206673},
  doi =		{10.4230/LIPIcs.WABI.2024.23},
  annote =	{Keywords: pangenome, variation graph, genome alignment, population genomics}
}
Document
Haplotype-aware graph indexes

Authors: Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict J. Paten, and Richard Durbin

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
The variation graph toolkit (VG) represents genetic variation as a graph. Each path in the graph is a potential haplotype, though most paths are unlikely recombinations of true haplotypes. We augment the VG model with haplotype information to identify which paths are more likely to be correct. For this purpose, we develop a scalable implementation of the graph extension of the positional Burrows-Wheeler transform. We demonstrate the scalability of the new implementation by indexing the 1000 Genomes Project haplotypes. We also develop an algorithm for simplifying variation graphs for k-mer indexing without losing any k-mers in the haplotypes.

Cite as

Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict J. Paten, and Richard Durbin. Haplotype-aware graph indexes. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{siren_et_al:LIPIcs.WABI.2018.4,
  author =	{Sir\'{e}n, Jouni and Garrison, Erik and Novak, Adam M. and Paten, Benedict J. and Durbin, Richard},
  title =	{{Haplotype-aware graph indexes}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.4},
  URN =		{urn:nbn:de:0030-drops-93060},
  doi =		{10.4230/LIPIcs.WABI.2018.4},
  annote =	{Keywords: FM-indexes, variation graphs, haplotypes}
}
Document
An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

Authors: Yohei M. Rosen and Benedict J. Paten

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for computationally tractable probability calculations using the forward algorithms as long as the representative reference panel used in the model is sufficiently small. Specifically, the monoploid Li and Stephens model and its variants are linear in reference panel size unless heuristic approximations are used. However, sequencing projects numbering in the thousands to hundreds of thousands of individuals are underway, and others numbering in the millions are anticipated. To make the Li and Stephens forward algorithm for these datasets computationally tractable, we have created a numerically exact version of the algorithm with observed average case O(nk^{0.35}) runtime in number of genetic sites n and reference panel size k. This avoids any tradeoff between runtime and model complexity. We demonstrate that our approach also provides a succinct data structure for general purpose haplotype data storage. We discuss generalizations of our algorithmic techniques to other hidden Markov models.

Cite as

Yohei M. Rosen and Benedict J. Paten. An Average-Case Sublinear Exact Li and Stephens Forward Algorithm. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 9:1-9:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{rosen_et_al:LIPIcs.WABI.2018.9,
  author =	{Rosen, Yohei M. and Paten, Benedict J.},
  title =	{{An Average-Case Sublinear Exact Li and Stephens Forward Algorithm}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{9:1--9:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.9},
  URN =		{urn:nbn:de:0030-drops-93116},
  doi =		{10.4230/LIPIcs.WABI.2018.9},
  annote =	{Keywords: Haplotype, Hidden Markov Model, Forward Algorithm, Lazy Evaluation}
}
  • Refine by Author
  • 2 Paten, Benedict J.
  • 1 Ascone, Rocco
  • 1 Bernardini, Giulia
  • 1 Cicherski, Adam
  • 1 Conte, Alessio
  • Show More...

  • Refine by Classification
  • 3 Applied computing → Computational genomics
  • 2 Applied computing → Bioinformatics
  • 2 Theory of computation → Pattern matching
  • 1 Applied computing → Molecular sequence analysis
  • 1 Software and its engineering → Software performance
  • Show More...

  • Refine by Keyword
  • 1 A*
  • 1 Dynamic programming
  • 1 Edit distance
  • 1 FM-indexes
  • 1 Forward Algorithm
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2024
  • 2 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail