2 Search Results for "Roghani, Mohammad"


Document
Beating the Folklore Algorithm for Dynamic Matching

Authors: Mohammad Roghani, Amin Saberi, and David Wajc

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence 2-approximate) matching in O(n) worst-case update time in n-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of both approximation ratio and worst-case update time. Specifically, we give a (2-Ω(1))-approximate algorithm with O(m^{3/8}) = O(n^{3/4}) worst-case update time in n-node, m-edge graphs. For sufficiently small constant ε > 0, no deterministic (2+ε)-approximate algorithm with worst-case update time O(n^{0.99}) was known. Our second result is the first deterministic (2+ε)-approximate weighted matching algorithm with O_ε(1)⋅ O(∜{m}) = O_ε(1)⋅ O(√n) worst-case update time. Neither of our results were previously known to be achievable by a randomized algorithm against an adaptive adversary. Our main technical contributions are threefold: first, we characterize the tight cases for kernels, which are the well-studied matching sparsifiers underlying much of the (2+ε)-approximate dynamic matching literature. This characterization, together with multiple ideas - old and new - underlies our result for breaking the approximation barrier of 2. Our second technical contribution is the first example of a dynamic matching algorithm whose running time is improved due to improving the recourse of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite matching algorithms as black-box subroutines for dynamic matching in general graphs without incurring the natural 3/2 factor in the approximation ratio which such approaches naturally incur (reminiscent of the integrality gap of the fractional matching polytope in general graphs).

Cite as

Mohammad Roghani, Amin Saberi, and David Wajc. Beating the Folklore Algorithm for Dynamic Matching. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 111:1-111:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{roghani_et_al:LIPIcs.ITCS.2022.111,
  author =	{Roghani, Mohammad and Saberi, Amin and Wajc, David},
  title =	{{Beating the Folklore Algorithm for Dynamic Matching}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{111:1--111:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.111},
  URN =		{urn:nbn:de:0030-drops-157077},
  doi =		{10.4230/LIPIcs.ITCS.2022.111},
  annote =	{Keywords: dynamic matching, dynamic graph algorithms, sublinear algorithms}
}
Document
Complexity of Computing the Anti-Ramsey Numbers for Paths

Authors: Saeed Akhoondian Amiri, Alexandru Popa, Mohammad Roghani, Golnoosh Shahkarami, Reza Soltani, and Hossein Vahidi

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
The anti-Ramsey numbers are a fundamental notion in graph theory, introduced in 1978, by Erdös, Simonovits and Sós. For given graphs G and H the anti-Ramsey number ar(G,H) is defined to be the maximum number k such that there exists an assignment of k colors to the edges of G in which every copy of H in G has at least two edges with the same color. Usually, combinatorists study extremal values of anti-Ramsey numbers for various classes of graphs. There are works on the computational complexity of the problem when H is a star. Along this line of research, we study the complexity of computing the anti-Ramsey number ar(G,P_k), where P_k is a path of length k. First, we observe that when k is close to n, the problem is hard; hence, the challenging part is the computational complexity of the problem when k is a fixed constant. We provide a characterization of the problem for paths of constant length. Our first main contribution is to prove that computing ar(G,P_k) for every integer k > 2 is NP-hard. We obtain this by providing several structural properties of such coloring in graphs. We investigate further and show that approximating ar(G,P₃) to a factor of n^{-1/2 - ε} is hard already in 3-partite graphs, unless P = NP. We also study the exact complexity of the precolored version and show that there is no subexponential algorithm for the problem unless ETH fails for any fixed constant k. Given the hardness of approximation and parametrization of the problem, it is natural to study the problem on restricted graph families. Along this line, we first introduce the notion of color connected coloring, and, employing this structural property, we obtain a linear time algorithm to compute ar(G,P_k), for every integer k, when the host graph, G, is a tree.

Cite as

Saeed Akhoondian Amiri, Alexandru Popa, Mohammad Roghani, Golnoosh Shahkarami, Reza Soltani, and Hossein Vahidi. Complexity of Computing the Anti-Ramsey Numbers for Paths. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 6:1-6:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{akhoondianamiri_et_al:LIPIcs.MFCS.2020.6,
  author =	{Akhoondian Amiri, Saeed and Popa, Alexandru and Roghani, Mohammad and Shahkarami, Golnoosh and Soltani, Reza and Vahidi, Hossein},
  title =	{{Complexity of Computing the Anti-Ramsey Numbers for Paths}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.6},
  URN =		{urn:nbn:de:0030-drops-126781},
  doi =		{10.4230/LIPIcs.MFCS.2020.6},
  annote =	{Keywords: Coloring, Anti-Ramsey, Approximation, NP-hard, Algorithm, ETH}
}
  • Refine by Author
  • 2 Roghani, Mohammad
  • 1 Akhoondian Amiri, Saeed
  • 1 Popa, Alexandru
  • 1 Saberi, Amin
  • 1 Shahkarami, Golnoosh
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 1 Algorithm
  • 1 Anti-Ramsey
  • 1 Approximation
  • 1 Coloring
  • 1 ETH
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail