3 Search Results for "Shapiro, Ehud"


Document
Finite Combinatory Logic with Predicates

Authors: Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Type inhabitation in extensions of Finite Combinatory Logic (FCL) is the mechanism underlying various component-oriented synthesis frameworks. In FCL inhabitant sets correspond to regular tree languages and vice versa. Therefore, it is not possible to specify non-regular properties of inhabitants, such as (dis)equality of subterms. Additionally, the monomorphic nature of FCL oftentimes hinders concise specification of components. We propose a conservative extension to FCL by quantifiers and predicates, introducing a restricted form of polymorphism. In the proposed type system (FCLP) inhabitant sets correspond to decidable term languages and vice versa. As a consequence, type inhabitation in FCLP is undecidable. Based on results in tree automata theory, we identify a fragment of FCLP with the following two properties. First, the fragment enjoys decidable type inhabitation. Second, it allows for specification of local (dis)equality constraints for subterms of inhabitants. For empirical evaluation, we implement a semi-decision procedure for type inhabitation in FCLP. We compare specification capabilities, scalability, and performance of the implementation to existing FCL-based approaches. Finally, we evaluate practical applicability via a case study, synthesizing mechanically sound robotic arms.

Cite as

Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof. Finite Combinatory Logic with Predicates. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 2:1-2:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.TYPES.2023.2,
  author =	{Dudenhefner, Andrej and Stahl, Christoph and Chaumet, Constantin and Laarmann, Felix and Rehof, Jakob},
  title =	{{Finite Combinatory Logic with Predicates}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{2:1--2:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.2},
  URN =		{urn:nbn:de:0030-drops-204808},
  doi =		{10.4230/LIPIcs.TYPES.2023.2},
  annote =	{Keywords: combinatory logic, inhabitation, intersection types, program synthesis}
}
Document
Cordial Miners: Fast and Efficient Consensus for Every Eventuality

Authors: Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Cordial Miners are a family of efficient Byzantine Atomic Broadcast protocols, with instances for asynchrony and eventual synchrony. They improve the latency of state-of-the-art DAG-based protocols by almost 2× and achieve optimal good-case complexity of O(n) by forgoing Reliable Broadcast as a building block. Rather, Cordial Miners use the blocklace - a partially-ordered counterpart of the totally-ordered blockchain data structure - to implement the three algorithmic components of consensus: Dissemination, equivocation-exclusion, and ordering.

Cite as

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial Miners: Fast and Efficient Consensus for Every Eventuality. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{keidar_et_al:LIPIcs.DISC.2023.26,
  author =	{Keidar, Idit and Naor, Oded and Poupko, Ouri and Shapiro, Ehud},
  title =	{{Cordial Miners: Fast and Efficient Consensus for Every Eventuality}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26},
  URN =		{urn:nbn:de:0030-drops-191525},
  doi =		{10.4230/LIPIcs.DISC.2023.26},
  annote =	{Keywords: Byzantine Fault Tolerance, State Machine Replication, DAG, Consensus, Blockchain, Blocklace, Cordial Dissemination}
}
Document
Brief Announcement
Brief Announcement: Grassroots Distributed Systems: Concept, Examples, Implementation and Applications

Authors: Ehud Shapiro

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Informally, a distributed system is grassroots if it is permissionless and can have autonomous, independently-deployed instances - geographically and over time - that may interoperate voluntarily once interconnected. More formally, in a grassroots system the set of all correct behaviors of a set of agents P is strictly included in the set of the correct behaviors of P when they are embedded within a larger set of agents P' ⊃ P. Grassroots systems are potentially important as they may allow communities to conduct their social, economic, civic, and political lives in the digital realm solely using their members' networked computing devices (e.g., smartphones), free of third-party control, surveillance, manipulation, coercion, or rent seeking (e.g., by global digital platforms such as Facebook or Bitcoin). Client-server/cloud computing systems are not grassroots, and neither are systems designed to have a single global instance (Bitcoin/Ethereum with hardwired seed miners/bootnodes), and systems that rely on a single global data structure (IPFS, DHTs). An example grassroots system would be a serverless smartphone-based social network supporting multiple independently-budding communities that can merge when a member of one community becomes also a member of another. Here, we formalize the notion of grassroots distributed systems; describe a grassroots dissemination protocol for the model of asynchrony and argue its safety, liveness, and being grassroots; extend the implementation to mobile (address-changing) devices that communicate via an unreliable network (e.g. smartphones using UDP); and discuss how grassroots dissemination can realize grassroots social networking and grassroots cryptocurrencies. The mathematical construction employs distributed multiagent transition systems to define the notions of grassroots protocols, to specify the grassroots dissemination protocols, and to prove their correctness. The protocols use the blocklace - a distributed, partially-ordered counterpart of the replicated, totally-ordered blockchain.

Cite as

Ehud Shapiro. Brief Announcement: Grassroots Distributed Systems: Concept, Examples, Implementation and Applications. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 47:1-47:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{shapiro:LIPIcs.DISC.2023.47,
  author =	{Shapiro, Ehud},
  title =	{{Brief Announcement: Grassroots Distributed Systems: Concept, Examples, Implementation and Applications}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{47:1--47:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.47},
  URN =		{urn:nbn:de:0030-drops-191735},
  doi =		{10.4230/LIPIcs.DISC.2023.47},
  annote =	{Keywords: Grassroots Distributed Systems, Dissemination Protocol, Multiagent Transition Systems, Blocklace, Cordial Dissemination}
}
  • Refine by Author
  • 2 Shapiro, Ehud
  • 1 Chaumet, Constantin
  • 1 Dudenhefner, Andrej
  • 1 Keidar, Idit
  • 1 Laarmann, Felix
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Peer-to-peer architectures
  • 1 Computing methodologies → Distributed algorithms
  • 1 Networks → Formal specifications
  • 1 Networks → Network protocol design
  • 1 Software and its engineering → Distributed systems organizing principles
  • Show More...

  • Refine by Keyword
  • 2 Blocklace
  • 2 Cordial Dissemination
  • 1 Blockchain
  • 1 Byzantine Fault Tolerance
  • 1 Consensus
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail