Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
Michael Kaminski and Igor E. Shparlinski. Sets of Linear Forms Which Are Hard to Compute. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 66:1-66:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
@InProceedings{kaminski_et_al:LIPIcs.MFCS.2021.66, author = {Kaminski, Michael and Shparlinski, Igor E.}, title = {{Sets of Linear Forms Which Are Hard to Compute}}, booktitle = {46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)}, pages = {66:1--66:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-201-3}, ISSN = {1868-8969}, year = {2021}, volume = {202}, editor = {Bonchi, Filippo and Puglisi, Simon J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.66}, URN = {urn:nbn:de:0030-drops-145065}, doi = {10.4230/LIPIcs.MFCS.2021.66}, annote = {Keywords: Linear algorithms, additive complexity, effective Perron theorem, effective Lindemann-Weierstrass theorem} }
Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)
Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski. Optimal Quantum Algorithm for Polynomial Interpolation. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 16:1-16:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
@InProceedings{childs_et_al:LIPIcs.ICALP.2016.16, author = {Childs, Andrew M. and van Dam, Wim and Hung, Shih-Han and Shparlinski, Igor E.}, title = {{Optimal Quantum Algorithm for Polynomial Interpolation}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {16:1--16:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.16}, URN = {urn:nbn:de:0030-drops-62985}, doi = {10.4230/LIPIcs.ICALP.2016.16}, annote = {Keywords: Quantum algorithms, query complexity, polynomial interpolation, finite fields} }
Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)
Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset Sum in the Absence of Concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 48-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
@InProceedings{austrin_et_al:LIPIcs.STACS.2015.48, author = {Austrin, Per and Kaski, Petteri and Koivisto, Mikko and Nederlof, Jesper}, title = {{Subset Sum in the Absence of Concentration}}, booktitle = {32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)}, pages = {48--61}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-78-1}, ISSN = {1868-8969}, year = {2015}, volume = {30}, editor = {Mayr, Ernst W. and Ollinger, Nicolas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.48}, URN = {urn:nbn:de:0030-drops-49034}, doi = {10.4230/LIPIcs.STACS.2015.48}, annote = {Keywords: subset sum, additive combinatorics, exponential-time algorithm, homomorphic hashing, Littlewood--Offord problem} }
Published in: Dagstuhl Seminar Proceedings, Volume 6111, Complexity of Boolean Functions (2006)
Igor E. Shparlinski. Bounds on the Fourier Coefficients of the Weighted Sum Function. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, pp. 1-9, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2006)
@InProceedings{shparlinski:DagSemProc.06111.5, author = {Shparlinski, Igor E.}, title = {{Bounds on the Fourier Coefficients of the Weighted Sum Function}}, booktitle = {Complexity of Boolean Functions}, pages = {1--9}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2006}, volume = {6111}, editor = {Matthias Krause and Pavel Pudl\'{a}k and R\"{u}diger Reischuk and Dieter van Melkebeek}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06111.5}, URN = {urn:nbn:de:0030-drops-6171}, doi = {10.4230/DagSemProc.06111.5}, annote = {Keywords: Fourier coefficients, congruences, average sensitivity, decision tree} }
Feedback for Dagstuhl Publishing