5 Search Results for "Siegel, Michael"


Document
Vision Paper
The Future of Geographic Information Displays from GIScience, Cartographic, and Cognitive Science Perspectives (Vision Paper)

Authors: Tyler Thrash, Sara Lanini-Maggi, Sara I. Fabrikant, Sven Bertel, Annina Brügger, Sascha Credé, Cao Tri Do, Georg Gartner, Haosheng Huang, Stefan Münzer, and Kai-Florian Richter

Published in: LIPIcs, Volume 142, 14th International Conference on Spatial Information Theory (COSIT 2019)


Abstract
With the development of modern geovisual analytics tools, several researchers have emphasized the importance of understanding users' cognitive, perceptual, and affective tendencies for supporting spatial decisions with geographic information displays (GIDs). However, most recent technological developments have focused on support for navigation in terms of efficiency and effectiveness while neglecting the importance of spatial learning. In the present paper, we will envision the future of GIDs that also support spatial learning in the context of large-scale navigation. Specifically, we will illustrate the manner in which GIDs have been (in the past) and might be (in the future) designed to be context-responsive, personalized, and supportive for active spatial learning from three different perspectives (i.e., GIScience, cartography, and cognitive science). We will also explain why this approach is essential for preventing the technological infantilizing of society (i.e., the reduction of our capacity to make decisions without technological assistance). Although these issues are common to nearly all emerging digital technologies, we argue that these issues become especially relevant in consideration of a person’s current and future locations.

Cite as

Tyler Thrash, Sara Lanini-Maggi, Sara I. Fabrikant, Sven Bertel, Annina Brügger, Sascha Credé, Cao Tri Do, Georg Gartner, Haosheng Huang, Stefan Münzer, and Kai-Florian Richter. The Future of Geographic Information Displays from GIScience, Cartographic, and Cognitive Science Perspectives (Vision Paper). In 14th International Conference on Spatial Information Theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 142, pp. 19:1-19:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{thrash_et_al:LIPIcs.COSIT.2019.19,
  author =	{Thrash, Tyler and Lanini-Maggi, Sara and Fabrikant, Sara I. and Bertel, Sven and Br\"{u}gger, Annina and Cred\'{e}, Sascha and Do, Cao Tri and Gartner, Georg and Huang, Haosheng and M\"{u}nzer, Stefan and Richter, Kai-Florian},
  title =	{{The Future of Geographic Information Displays from GIScience, Cartographic, and Cognitive Science Perspectives}},
  booktitle =	{14th International Conference on Spatial Information Theory (COSIT 2019)},
  pages =	{19:1--19:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-115-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{142},
  editor =	{Timpf, Sabine and Schlieder, Christoph and Kattenbeck, Markus and Ludwig, Bernd and Stewart, Kathleen},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2019.19},
  URN =		{urn:nbn:de:0030-drops-111113},
  doi =		{10.4230/LIPIcs.COSIT.2019.19},
  annote =	{Keywords: visual displays, geographic information, cartography, cognitive science}
}
Document
Modeling Power Consumption and Temperature in TLM Models

Authors: Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Many techniques and tools exist to estimate the power consumption and the temperature map of a chip. These tools help the hardware designers develop power efficient chips in the presence of temperature constraints. For this task, the application can be ignored or at least abstracted by some high level scenarios; at this stage, the actual embedded software is generally not available yet.However, after the hardware is defined, the embedded software can still have a significant influence on the power consumption; i.e., two implementations of the same application can consume more or less power. Moreover, the actual software power manager ensuring the temperature constraints, usually by acting dynamically on the voltage and frequency, must itself be validated. Validating such power management policy requires a model of both actuators and sensors, hence a closed-loop simulation of the functional model with a non-functional one.In this paper, we present and compare several tools to simulate the power and thermal behavior of a chip together with its functionality. We explore several levels of abstraction and study the impact on the precision of the analysis.

Cite as

Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi. Modeling Power Consumption and Temperature in TLM Models. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 03:1-03:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{moy_et_al:LITES-v003-i001-a003,
  author =	{Moy, Matthieu and Helmstetter, Claude and Bouhadiba, Tayeb and Maraninchi, Florence},
  title =	{{Modeling Power Consumption and Temperature in TLM Models}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:29},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a003},
  doi =		{10.4230/LITES-v003-i001-a003},
  annote =	{Keywords: Power consumption, Temperature control, Virtual prototype, SystemC, Transactional modeling}
}
Document
Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

Authors: Mark Bun and Thomas Steinke

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
Low-degree polynomial approximations to the sign function underlie pseudorandom generators for halfspaces, as well as algorithms for agnostically learning halfspaces. We study the limits of these constructions by proving inapproximability results for the sign function. First, we investigate the derandomization of Chernoff-type concentration inequalities. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that a tail bound of delta can be established for sums of Bernoulli random variables with only O(log(1/delta))-wise independence. We show that their results are tight up to constant factors. Secondly, the “polynomial regression” algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be efficiently learned with respect to log-concave distributions on R^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. In contrast, we exhibit a large class of non-log-concave distributions under which polynomials of any degree cannot approximate the sign function to within arbitrarily low error.

Cite as

Mark Bun and Thomas Steinke. Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 625-644, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bun_et_al:LIPIcs.APPROX-RANDOM.2015.625,
  author =	{Bun, Mark and Steinke, Thomas},
  title =	{{Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{625--644},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.625},
  URN =		{urn:nbn:de:0030-drops-53274},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.625},
  annote =	{Keywords: Polynomial Approximations, Pseudorandomness, Concentration, Learning Theory, Halfspaces}
}
Document
Upper Tail Estimates with Combinatorial Proofs

Authors: Jan Hazla and Thomas Holenstein

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and use it to obtain an optimal expander random walk concentration bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain an upper tail bound for polynomials with input variables in [0, 1] which are not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets. The resulting bound is applied by Holenstein and Sinha (FOCS, 2012) in the proof of a lower bound for the number of calls in a black-box construction of a pseudorandom generator from a one-way function. We also show that the same technique yields the upper tail bound for the number of copies of a fixed graph in an Erdös–Rényi random graph, matching the one given by Janson, Oleszkiewicz, and Rucinski (Israel J. Math, 2002).

Cite as

Jan Hazla and Thomas Holenstein. Upper Tail Estimates with Combinatorial Proofs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 392-405, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{hazla_et_al:LIPIcs.STACS.2015.392,
  author =	{Hazla, Jan and Holenstein, Thomas},
  title =	{{Upper Tail Estimates with Combinatorial Proofs}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{392--405},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.392},
  URN =		{urn:nbn:de:0030-drops-49291},
  doi =		{10.4230/LIPIcs.STACS.2015.392},
  annote =	{Keywords: concentration bounds, expander random walks, polynomial concentration}
}
Document
Test Automation for Reactive Systems - Theorie and Practice (Dagstuhl Seminar 98361)

Authors: Ed Brinksma, Jan Peleska, and Michael Siegel

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Ed Brinksma, Jan Peleska, and Michael Siegel. Test Automation for Reactive Systems - Theorie and Practice (Dagstuhl Seminar 98361). Dagstuhl Seminar Report 223, pp. 1-23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (1998)


Copy BibTex To Clipboard

@TechReport{brinksma_et_al:DagSemRep.223,
  author =	{Brinksma, Ed and Peleska, Jan and Siegel, Michael},
  title =	{{Test Automation for Reactive Systems - Theorie and Practice (Dagstuhl Seminar 98361)}},
  pages =	{1--23},
  ISSN =	{1619-0203},
  year =	{1998},
  type = 	{Dagstuhl Seminar Report},
  number =	{223},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemRep.223},
  URN =		{urn:nbn:de:0030-drops-151097},
  doi =		{10.4230/DagSemRep.223},
}
  • Refine by Author
  • 1 Bertel, Sven
  • 1 Bouhadiba, Tayeb
  • 1 Brinksma, Ed
  • 1 Brügger, Annina
  • 1 Bun, Mark
  • Show More...

  • Refine by Classification
  • 1 Hardware → Chip-level power issues
  • 1 Human-centered computing → Geographic visualization

  • Refine by Keyword
  • 1 Concentration
  • 1 Halfspaces
  • 1 Learning Theory
  • 1 Polynomial Approximations
  • 1 Power consumption
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2015
  • 1 1998
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail