9 Search Results for "Smotrovs, Juris"


Document
On Converses to the Polynomial Method

Authors: Jop Briët and Francisco Escudero Gutiérrez

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
A surprising "converse to the polynomial method" of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. A natural question posed there asks if bounded quartic polynomials can be approximated by 2-query quantum algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue of the result of Aaronson et al. in this case. We improve on this result in the following ways: First, we point out and fix a small error in the construction that has to do with a translation from cubic to quartic polynomials. Second, we give a completely explicit example based on techniques from additive combinatorics. Third, we show that the result still holds when we allow for a small additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP'19) for the completely-bounded approximate degree.

Cite as

Jop Briët and Francisco Escudero Gutiérrez. On Converses to the Polynomial Method. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{briet_et_al:LIPIcs.TQC.2022.6,
  author =	{Bri\"{e}t, Jop and Escudero Guti\'{e}rrez, Francisco},
  title =	{{On Converses to the Polynomial Method}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.6},
  URN =		{urn:nbn:de:0030-drops-165139},
  doi =		{10.4230/LIPIcs.TQC.2022.6},
  annote =	{Keywords: Quantum query complexity, polynomial method, completely bounded polynomials}
}
Document
Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

Authors: Andris Ambainis, Kaspars Balodis, Jānis Iraids, Kamil Khadiev, Vladislavs Kļevickis, Krišjānis Prūsis, Yixin Shen, Juris Smotrovs, and Jevgēnijs Vihrovs

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most k. We call this the Dyck_{k,n} problem. We prove a lower bound of Ω(c^k √n), showing that the complexity of this problem increases exponentially in k. Here n is the length of the word. When k is a constant, this is interesting as a representative example of star-free languages for which a surprising Õ(√n) query quantum algorithm was recently constructed by Aaronson et al. [Scott Aaronson et al., 2018]. Their proof does not give rise to a general algorithm. When k is not a constant, Dyck_{k,n} is not context-free. We give an algorithm with O(√n(log n)^{0.5k}) quantum queries for Dyck_{k,n} for all k. This is better than the trival upper bound n for k = o({log(n)}/{log log n}). Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of the grid may be missing. By embedding the "balanced parentheses" problem into the grid, we show a lower bound of Ω(n^{1.5-ε}) for the directed 2D grid and Ω(n^{2-ε}) for the undirected 2D grid. The directed problem is interesting as a black-box model for a class of classical dynamic programming strategies including the one that is usually used for the well-known edit distance problem. We also show a generalization of this result to more than 2 dimensions.

Cite as

Andris Ambainis, Kaspars Balodis, Jānis Iraids, Kamil Khadiev, Vladislavs Kļevickis, Krišjānis Prūsis, Yixin Shen, Juris Smotrovs, and Jevgēnijs Vihrovs. Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 8:1-8:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ambainis_et_al:LIPIcs.MFCS.2020.8,
  author =	{Ambainis, Andris and Balodis, Kaspars and Iraids, J\={a}nis and Khadiev, Kamil and K\c{l}evickis, Vladislavs and Pr\={u}sis, Kri\v{s}j\={a}nis and Shen, Yixin and Smotrovs, Juris and Vihrovs, Jevg\={e}nijs},
  title =	{{Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.8},
  URN =		{urn:nbn:de:0030-drops-126774},
  doi =		{10.4230/LIPIcs.MFCS.2020.8},
  annote =	{Keywords: Quantum query complexity, Quantum algorithms, Dyck language, Grid path}
}
Document
Optimal Separation and Strong Direct Sum for Randomized Query Complexity

Authors: Eric Blais and Joshua Brody

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We establish two results regarding the query complexity of bounded-error randomized algorithms. Bounded-error separation theorem. There exists a total function f : {0,1}^n -> {0,1} whose epsilon-error randomized query complexity satisfies overline{R}_epsilon(f) = Omega(R(f) * log 1/epsilon). Strong direct sum theorem. For every function f and every k >= 2, the randomized query complexity of computing k instances of f simultaneously satisfies overline{R}_epsilon(f^k) = Theta(k * overline{R}_{epsilon/k}(f)). As a consequence of our two main results, we obtain an optimal superlinear direct-sum-type theorem for randomized query complexity: there exists a function f for which R(f^k) = Theta(k log k * R(f)). This answers an open question of Drucker (2012). Combining this result with the query-to-communication complexity lifting theorem of Göös, Pitassi, and Watson (2017), this also shows that there is a total function whose public-coin randomized communication complexity satisfies R^{cc}(f^k) = Theta(k log k * R^{cc}(f)), answering a question of Feder, Kushilevitz, Naor, and Nisan (1995).

Cite as

Eric Blais and Joshua Brody. Optimal Separation and Strong Direct Sum for Randomized Query Complexity. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{blais_et_al:LIPIcs.CCC.2019.29,
  author =	{Blais, Eric and Brody, Joshua},
  title =	{{Optimal Separation and Strong Direct Sum for Randomized Query Complexity}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.29},
  URN =		{urn:nbn:de:0030-drops-108511},
  doi =		{10.4230/LIPIcs.CCC.2019.29},
  annote =	{Keywords: Decision trees, query complexity, communication complexity}
}
Document
Equality Alone Does not Simulate Randomness

Authors: Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
The canonical problem that gives an exponential separation between deterministic and randomized communication complexity in the classical two-party communication model is "Equality". In this work we show that even allowing access to an "Equality" oracle, deterministic protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total function on n bits with randomized one-sided communication complexity O(log n), but such that every deterministic protocol with access to "Equality" oracle needs Omega(n) cost to compute it. Additionally we exhibit a natural and strict infinite hierarchy within BPP, starting with the class P^{EQ} at its bottom.

Cite as

Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality Alone Does not Simulate Randomness. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 14:1-14:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chattopadhyay_et_al:LIPIcs.CCC.2019.14,
  author =	{Chattopadhyay, Arkadev and Lovett, Shachar and Vinyals, Marc},
  title =	{{Equality Alone Does not Simulate Randomness}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{14:1--14:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.14},
  URN =		{urn:nbn:de:0030-drops-108368},
  doi =		{10.4230/LIPIcs.CCC.2019.14},
  annote =	{Keywords: Communication lower bound, derandomization}
}
Document
Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge

Authors: Shalev Ben-David and Robin Kothari

Published in: LIPIcs, Volume 135, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)


Abstract
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a "quantum distinguishing algorithm" can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O~(Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QD(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.

Cite as

Shalev Ben-David and Robin Kothari. Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bendavid_et_al:LIPIcs.TQC.2019.2,
  author =	{Ben-David, Shalev and Kothari, Robin},
  title =	{{Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge}},
  booktitle =	{14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-112-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{135},
  editor =	{van Dam, Wim and Man\v{c}inska, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2019.2},
  URN =		{urn:nbn:de:0030-drops-103944},
  doi =		{10.4230/LIPIcs.TQC.2019.2},
  annote =	{Keywords: Quantum query complexity, quantum algorithms}
}
Document
Polynomials, Quantum Query Complexity, and Grothendieck's Inequality

Authors: Scott Aaronson, Andris Ambainis, Janis Iraids, Martins Kokainis, and Juris Smotrovs

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We show an equivalence between 1-query quantum algorithms and representations by degree-2 polynomials. Namely, a partial Boolean function f is computable by a 1-query quantum algorithm with error bounded by epsilon<1/2 iff f can be approximated by a degree-2 polynomial with error bounded by epsilon'<1/2. This result holds for two different notions of approximation by a polynomial: the standard definition of Nisan and Szegedy and the approximation by block-multilinear polynomials recently introduced by Aaronson and Ambainis [Aaronson/Ambainis, STOC 2015]. The proof uses Grothendieck's inequality to relate two matrix norms, with one norm corresponding to polynomial approximations and the other norm corresponding to quantum algorithms. We also show two results for polynomials of higher degree. First, there is a total Boolean function which requires ~Omega(n) quantum queries but can be represented by a block-multilinear polynomial of degree ~O(sqrt(n)). Thus, in the general case (for an arbitrary number of queries), block-multilinear polynomials are not equivalent to quantum algorithms. Second, for any constant degree k, the two notions of approximation by a polynomial (the standard and the block-multilinear) are equivalent. As a consequence, we solve an open problem from [Aaronson/Ambainis, STOC 2015], showing that one can estimate the value of any bounded degree-k polynomial p:{0,1}^n -> [-1,1] with O(n^{1-1/(2k)) queries.

Cite as

Scott Aaronson, Andris Ambainis, Janis Iraids, Martins Kokainis, and Juris Smotrovs. Polynomials, Quantum Query Complexity, and Grothendieck's Inequality. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 25:1-25:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2016.25,
  author =	{Aaronson, Scott and Ambainis, Andris and Iraids, Janis and Kokainis, Martins and Smotrovs, Juris},
  title =	{{Polynomials, Quantum Query Complexity, and Grothendieck's Inequality}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.25},
  URN =		{urn:nbn:de:0030-drops-58394},
  doi =		{10.4230/LIPIcs.CCC.2016.25},
  annote =	{Keywords: quantum algorithms, Boolean functions, approximation by polynomials, Grothendieck's inequality}
}
Document
Towards Better Separation between Deterministic and Randomized Query Complexity

Authors: Sagnik Mukhopadhyay and Swagato Sanyal

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
We show that there exists a Boolean function F which gives the following separations among deterministic query complexity (D(F)), randomized zero error query complexity (R_0(F)) and randomized one-sided error query complexity (R_1(F)): R_1(F) = ~O(sqrt{D(F)) and R_0(F)=~O(D(F))^3/4. This refutes the conjecture made by Saks and Wigderson that for any Boolean function f, R_0(f)=Omega(D(f))^0.753.. . This also shows widest separation between R_1(f) and D(f) for any Boolean function. The function F was defined by Göös, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function F certify optimal (quadratic) separation between D(f) and R_0(f), and polynomial separation between R_0(f) and R_1(f). Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considered in the work of Ambainis et al are different variants of F, in this work we show that the original function F itself is sufficient to refute the Saks-Wigderson conjecture and obtain widest possible separation between the deterministic and one-sided error randomized query complexity.

Cite as

Sagnik Mukhopadhyay and Swagato Sanyal. Towards Better Separation between Deterministic and Randomized Query Complexity. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 206-220, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{mukhopadhyay_et_al:LIPIcs.FSTTCS.2015.206,
  author =	{Mukhopadhyay, Sagnik and Sanyal, Swagato},
  title =	{{Towards Better Separation between Deterministic and Randomized Query Complexity}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{206--220},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.206},
  URN =		{urn:nbn:de:0030-drops-56467},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.206},
  annote =	{Keywords: Deterministic Decision Tree, Randomized Decision Tree, Query Complexity, Models of Computation.}
}
Document
Exact Quantum Query Complexity of EXACT and THRESHOLD

Authors: Andris Ambainis, Janis Iraids, and Juris Smotrovs

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
A quantum algorithm is exact if it always produces the correct answer, on any input. Coming up with exact quantum algorithms that substantially outperform the best classical algorithm has been a quite challenging task. In this paper, we present two new exact quantum algorithms for natural problems: - for the problem EXACT_k^n in which we have to determine whether the sequence of input bits x_1, ..., x_n contains exactly k values x_i=1; - for the problem THRESHOLD_k^n in which we have to determine if at least k of n input bits are equal to 1.

Cite as

Andris Ambainis, Janis Iraids, and Juris Smotrovs. Exact Quantum Query Complexity of EXACT and THRESHOLD. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 263-269, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{ambainis_et_al:LIPIcs.TQC.2013.263,
  author =	{Ambainis, Andris and Iraids, Janis and Smotrovs, Juris},
  title =	{{Exact Quantum Query Complexity of EXACT and THRESHOLD}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{263--269},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.263},
  URN =		{urn:nbn:de:0030-drops-43261},
  doi =		{10.4230/LIPIcs.TQC.2013.263},
  annote =	{Keywords: Quantum query algorithms, Complexity of Boolean functions}
}
Document
Optimal quantum query bounds for almost all Boolean functions

Authors: Andris Ambainis, Arturs Backurs, Juris Smotrovs, and Ronald de Wolf

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We show that almost all n-bit Boolean functions have bounded-error quantum query complexity at least n/2, up to lower-order terms. This improves over an earlier n/4 lower bound of Ambainis (A. Ambainis, 1999), and shows that van Dam's oracle interrogation (W. van Dam, 1998) is essentially optimal for almost all functions. Our proof uses the fact that the acceptance probability of a T-query algorithm can be written as the sum of squares of degree-T polynomials.

Cite as

Andris Ambainis, Arturs Backurs, Juris Smotrovs, and Ronald de Wolf. Optimal quantum query bounds for almost all Boolean functions. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 446-453, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{ambainis_et_al:LIPIcs.STACS.2013.446,
  author =	{Ambainis, Andris and Backurs, Arturs and Smotrovs, Juris and de Wolf, Ronald},
  title =	{{Optimal quantum query bounds for almost all Boolean functions}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{446--453},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.446},
  URN =		{urn:nbn:de:0030-drops-39557},
  doi =		{10.4230/LIPIcs.STACS.2013.446},
  annote =	{Keywords: Quantum computing, query complexity, lower bounds, polynomial method}
}
  • Refine by Author
  • 4 Ambainis, Andris
  • 4 Smotrovs, Juris
  • 2 Iraids, Janis
  • 1 Aaronson, Scott
  • 1 Backurs, Arturs
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Quantum complexity theory
  • 1 Mathematics of computing → Functional analysis
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Oracles and decision trees
  • 1 Theory of computation → Probabilistic computation
  • Show More...

  • Refine by Keyword
  • 3 Quantum query complexity
  • 2 polynomial method
  • 2 quantum algorithms
  • 2 query complexity
  • 1 Boolean functions
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 3 2019
  • 2 2013
  • 1 2015
  • 1 2016
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail