8 Search Results for "Urban, Susan"


Document
InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference

Authors: Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Supporting automatic type inference is in demand in modern language development. It is a challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java library that helps implement constraint-based type inference. A compiler writer uses InferType’s classes and methods to describe type constraints and typing rules for type inference. InferType then performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our developed optimization technique. It reduces the search space for type variables by pre-computing the structures of those type variables for mitigating the performance bottleneck of constraint solving with deeply nested types. We use InferType to implement type inference for a subset of Python, and conduct experiments to evaluate how the developed optimization technique can affect the performance of type inference. Our results show that InferType’s optimization can greatly mitigate the performance bottleneck for programs with deeply nested types, and can potentially improve the performance for large nested types.

Cite as

Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba. InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.23,
  author =	{Li, Senxi and Yamazaki, Tetsuro and Chiba, Shigeru},
  title =	{{InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.23},
  URN =		{urn:nbn:de:0030-drops-208728},
  doi =		{10.4230/LIPIcs.ECOOP.2024.23},
  annote =	{Keywords: Domain Specific Languages, Compilation, Static Analysis, Type Inference, Constraint Solving, SMT Solver}
}
Document
Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories

Authors: Ayda Grisiute and Martin Raubal

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
This paper presents the Spatial Nudging framework - a theory-based framework that maps out nudging strategies in the mobility domain and refines its existing definitions. We link these strategies by highlighting the role of perceived affordances across physical and digital interventions based on the Nudge Theory and the Theory of Affordances. Furthermore, we propose to use graph representation techniques as a supportive methodology to better align perceived and actual environments, thereby enhancing the intervention strategies' effectiveness. We illustrate the applicability of the Spatial Nudging framework and the supportive methodology in the context of an E-bike City vision. This paper lays the foundation for future research on theoretically integrating physical and digital interventions to promote sustainable mobility.

Cite as

Ayda Grisiute and Martin Raubal. Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grisiute_et_al:LIPIcs.COSIT.2024.5,
  author =	{Grisiute, Ayda and Raubal, Martin},
  title =	{{Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.5},
  URN =		{urn:nbn:de:0030-drops-208206},
  doi =		{10.4230/LIPIcs.COSIT.2024.5},
  annote =	{Keywords: spatial nudging, active mobility, Nudge Theory, Theory of Affordances, cognitive graphs}
}
Document
Short Paper
Towards a General Framework for Co-Location (Short Paper)

Authors: Keiran Suchak and Ed Manley

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Previous studies into co-location exist in a variety of fields such as epidemiology and human mobility. In each field, researchers are interested identifying points of co-location amongst members of a population. In each of these fields, however, the definition of what it means for members of the population to be co-located may differ; furthermore, the ways in which data are collected vary. This piece of work aims to provide an initial outline of a general framework for identifying points of co-location. It demonstrates that the identification of co-location points between individuals is sensitive to the way in which co-location is defined in each context, as well as the types of data used. Furthermore, it highlights the impact that uncertainty in observations can have on our ability to reliably identify co-location.

Cite as

Keiran Suchak and Ed Manley. Towards a General Framework for Co-Location (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 24:1-24:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{suchak_et_al:LIPIcs.COSIT.2024.24,
  author =	{Suchak, Keiran and Manley, Ed},
  title =	{{Towards a General Framework for Co-Location}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{24:1--24:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.24},
  URN =		{urn:nbn:de:0030-drops-208391},
  doi =		{10.4230/LIPIcs.COSIT.2024.24},
  annote =	{Keywords: human mobility, co-location, contact tracing}
}
Document
Short Paper
Assessing Perceived Route Difficulty in Environments with Different Complexity (Short Paper)

Authors: Arvid Horned, Zoe Falomir, and Kai-Florian Richter

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Today, anyone feeling lost in a city or unsure about how to navigate can use navigation services to look up routes to where they want to go. Current research investigating these services has primarily focused on how to find an appropriate route and how to best support navigation along it, and not how routes and the maps they are presented on are perceived. What makes one route look more difficult to navigate than another? And how does experience with using navigation services and maps in daily life influence how difficult a route is perceived to be? We explored these questions in a survey study where participants rated the perceived difficulty of pedestrian routes in ten different cities. The results show that routes in more complex urban environments were perceived as more complex than routes in easier environments. At least partly, perceived difficulty seems to follow earlier conceptualizations of route complexity, but open questions remain regarding the interplay of environmental structure, route properties, and the map representation.

Cite as

Arvid Horned, Zoe Falomir, and Kai-Florian Richter. Assessing Perceived Route Difficulty in Environments with Different Complexity (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 29:1-29:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{horned_et_al:LIPIcs.COSIT.2024.29,
  author =	{Horned, Arvid and Falomir, Zoe and Richter, Kai-Florian},
  title =	{{Assessing Perceived Route Difficulty in Environments with Different Complexity}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{29:1--29:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.29},
  URN =		{urn:nbn:de:0030-drops-208444},
  doi =		{10.4230/LIPIcs.COSIT.2024.29},
  annote =	{Keywords: navigation complexity, perceived difficulty, route display, spatial cognition}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Short Paper
Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application (Short Paper)

Authors: Alex Hagen-Zanker, Jingyan Yu, Naratip Santitissadeekorn, and Susan Hughes

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Characterisation of the urban expansion processes using time series of binary urban/non-urban land cover data is complex due to the need to account for the initial configuration and the rate of urban expansion over the analysed period. Failure to account for these factors makes the interpretation of landscape metrics for compactness, fragmentation, or clumpiness problematic and the comparison between geographical areas and time periods contentious. This paper presents an approach for characterisation using spatio-dynamic modelling which is data-centred using a process based model, Bayesian optimization, cluster identification, and maximum likelihood classification. An application of the approach across 652 functional urban areas in Europe (1975-2014) demonstrates the consistency of the approach and its ability to identify spatial and temporal trends in urban expansion processes.

Cite as

Alex Hagen-Zanker, Jingyan Yu, Naratip Santitissadeekorn, and Susan Hughes. Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 36:1-36:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hagenzanker_et_al:LIPIcs.GIScience.2023.36,
  author =	{Hagen-Zanker, Alex and Yu, Jingyan and Santitissadeekorn, Naratip and Hughes, Susan},
  title =	{{Characterizing Urban Expansion Processes Using Dynamic Spatial Models – a European Application}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{36:1--36:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.36},
  URN =		{urn:nbn:de:0030-drops-189312},
  doi =		{10.4230/LIPIcs.GIScience.2023.36},
  annote =	{Keywords: Urban expansion, morphology, spatio-temporal dynamics, simulation, compactness}
}
Document
An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams

Authors: Susan Urban, Suzanne Dietrich, and Yi Chen

Published in: Dagstuhl Seminar Proceedings, Volume 7191, Event Processing (2007)


Abstract
With advancements in technology over the last ten years, data management issues have evolved from a stored persistent form to also include streaming data generated from sensors and other software monitoring tools. Furthermore, distributed, event-based systems are becoming more prevalent, with a need to develop applications that can dynamically respond to information extracted from data streams. This research is investigating the integration of stream processing and event processing techniques, with expressive filtering capabilities that include queries over persistent databases to provide application context to the filtering process. Distributed Event Processing Agents (DEPAs) continuously filter events from multiple data streams of different formats that provide XML views. Composite events for data streams are expressed using the Composite Event Detection Language (CEDL) and mapped to Composite XQuery (CXQ) for implementation. CXQ is a language that extends XQuery with features from CEDL, including operators for expressing sequence, disjunction, conjunction, repetition, aggregation, and time windows for events. Continuous queries and composite event filters are integrated with techniques for materialized view maintenance and incremental evaluation in condition monitoring to provide efficient ways of enhancing stream filters with database queries. The filtering and event detection load is distributed among multiple DEPAs, with CXQ expressions decomposed to allocate subcomponents of the expression to DEPAs that efficiently communicate in the global detection of composite events. A unique aspect of our research is that it extends XQuery with temporal, composite event features to combine techniques for continuous queries in stream processing, incremental evaluation in condition monitoring, and detection and filtering of composite events, creating an expressive environment for the extraction of meaningful events from multiple data streams with XML views.

Cite as

Susan Urban, Suzanne Dietrich, and Yi Chen. An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams. In Event Processing. Dagstuhl Seminar Proceedings, Volume 7191, pp. 1-5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{urban_et_al:DagSemProc.07191.3,
  author =	{Urban, Susan and Dietrich, Suzanne and Chen, Yi},
  title =	{{An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams}},
  booktitle =	{Event Processing},
  pages =	{1--5},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7191},
  editor =	{Mani Chandy and Opher Etzion and Rainer von Ammon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07191.3},
  URN =		{urn:nbn:de:0030-drops-11423},
  doi =		{10.4230/DagSemProc.07191.3},
  annote =	{Keywords: Composite events, stream processing, event filtering, extended XQuery, distributed event processing}
}
Document
Formal Aspects of Object Base Dynamics (Dagstuhl Seminar 9317)

Authors: Catriel Beeri, Andreas Heuer, Gunter Saake, and Susan Urban

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Catriel Beeri, Andreas Heuer, Gunter Saake, and Susan Urban. Formal Aspects of Object Base Dynamics (Dagstuhl Seminar 9317). Dagstuhl Seminar Report 62, pp. 1-31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (1993)


Copy BibTex To Clipboard

@TechReport{beeri_et_al:DagSemRep.62,
  author =	{Beeri, Catriel and Heuer, Andreas and Saake, Gunter and Urban, Susan},
  title =	{{Formal Aspects of Object Base Dynamics (Dagstuhl Seminar 9317)}},
  pages =	{1--31},
  ISSN =	{1619-0203},
  year =	{1993},
  type = 	{Dagstuhl Seminar Report},
  number =	{62},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemRep.62},
  URN =		{urn:nbn:de:0030-drops-149501},
  doi =		{10.4230/DagSemRep.62},
}
  • Refine by Author
  • 2 Urban, Susan
  • 1 Beeri, Catriel
  • 1 Bonte, Pieter
  • 1 Calbimonte, Jean-Paul
  • 1 Chen, Yi
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Cartography
  • 1 Applied computing → Computer-aided design
  • 1 Applied computing → Environmental sciences
  • 1 Applied computing → Psychology
  • 1 Computing methodologies → Description logics
  • Show More...

  • Refine by Keyword
  • 1 Compilation
  • 1 Composite events
  • 1 Constraint Solving
  • 1 Continuous query processing
  • 1 Databases
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 5 2024
  • 1 1993
  • 1 2007
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail