2 Search Results for "Villanueva, Ignacio"


Document
Tight Bounds for the Randomized and Quantum Communication Complexities of Equality with Small Error

Authors: Olivier Lalonde, Nikhil S. Mande, and Ronald de Wolf

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We investigate the randomized and quantum communication complexities of the well-studied Equality function with small error probability ε, getting the optimal constant factors in the leading terms in various different models. The following are our results in the randomized model: - We give a general technique to convert public-coin protocols to private-coin protocols by incurring a small multiplicative error at a small additive cost. This is an improvement over Newman’s theorem [Inf. Proc. Let.'91] in the dependence on the error parameter. - As a consequence we obtain a (log(n/ε²) + 4)-cost private-coin communication protocol that computes the n-bit Equality function, to error ε. This improves upon the log(n/ε³) + O(1) upper bound implied by Newman’s theorem, and matches the best known lower bound, which follows from Alon [Comb. Prob. Comput.'09], up to an additive log log(1/ε) + O(1). The following are our results in various quantum models: - We exhibit a one-way protocol with log(n/ε) + 4 qubits of communication for the n-bit Equality function, to error ε, that uses only pure states. This bound was implicitly already shown by Nayak [PhD thesis'99]. - We give a near-matching lower bound: any ε-error one-way protocol for n-bit Equality that uses only pure states communicates at least log(n/ε) - log log(1/ε) - O(1) qubits. - We exhibit a one-way protocol with log(√n/ε) + 3 qubits of communication that uses mixed states. This is tight up to additive log log(1/ε) + O(1), which follows from Alon’s result. - We exhibit a one-way entanglement-assisted protocol achieving error probability ε with ⌈log(1/ε)⌉ + 1 classical bits of communication and ⌈log(√n/ε)⌉ + 4 shared EPR-pairs between Alice and Bob. This matches the communication cost of the classical public coin protocol achieving the same error probability while improving upon the amount of prior entanglement that is needed for this protocol, which is ⌈log(n/ε)⌉ + O(1) shared EPR-pairs. Our upper bounds also yield upper bounds on the approximate rank, approximate nonnegative-rank, and approximate psd-rank of the Identity matrix. As a consequence we also obtain improved upper bounds on these measures for a function that was recently used to refute the randomized and quantum versions of the log-rank conjecture (Chattopadhyay, Mande and Sherif [J. ACM'20], Sinha and de Wolf [FOCS'19], Anshu, Boddu and Touchette [FOCS'19]).

Cite as

Olivier Lalonde, Nikhil S. Mande, and Ronald de Wolf. Tight Bounds for the Randomized and Quantum Communication Complexities of Equality with Small Error. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lalonde_et_al:LIPIcs.FSTTCS.2023.32,
  author =	{Lalonde, Olivier and Mande, Nikhil S. and de Wolf, Ronald},
  title =	{{Tight Bounds for the Randomized and Quantum Communication Complexities of Equality with Small Error}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.32},
  URN =		{urn:nbn:de:0030-drops-194055},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.32},
  annote =	{Keywords: Communication complexity, quantum communication complexity}
}
Document
How Many Quantum Correlations Are Not Local?

Authors: Carlos E. González-Guillén, C. Hugo Jiménez, Carlos Palazuelos, and Ignacio Villanueva

Published in: LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)


Abstract
We study how generic is the property of nonlocality among the set of quantum correlations for bipartite dichotomic measurements. To do so, we consider the characterization of these quantum correlations as those of the form gamma = ( < u_i , v_j > )_{i,j=1}^n , where the vectors u_i and v_j are in the unit sphere of a real Hilbert space. The important parameters in this description are the number of vectors n and the dimension of the Hilbert space m. Thus, it is natural to study the probability of a quantum correlation being nonlocal as a function of alpha = m/n , where the previous vectors are independent and uniformly distributed in the unit sphere of R^m. In this situation, our main result shows the existence of two completely different regimes: There exists an alpha_0 > 0 such that if alpha leq alpha_0, then gamma is nonlocal with probability tending to 1 as n rightarrow infty. On the other hand, if alpha geq 2 then gamma is local with probability tending to 1 as n rightarrow infty.

Cite as

Carlos E. González-Guillén, C. Hugo Jiménez, Carlos Palazuelos, and Ignacio Villanueva. How Many Quantum Correlations Are Not Local?. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 39-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{gonzalezguillen_et_al:LIPIcs.TQC.2015.39,
  author =	{Gonz\'{a}lez-Guill\'{e}n, Carlos E. and Jim\'{e}nez, C. Hugo and Palazuelos, Carlos and Villanueva, Ignacio},
  title =	{{How Many Quantum Correlations Are Not Local?}},
  booktitle =	{10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)},
  pages =	{39--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-96-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{44},
  editor =	{Beigi, Salman and K\"{o}nig, Robert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.39},
  URN =		{urn:nbn:de:0030-drops-55475},
  doi =		{10.4230/LIPIcs.TQC.2015.39},
  annote =	{Keywords: nonlocality, quantum correlations, Bell inequalities, random matrices}
}
  • Refine by Author
  • 1 González-Guillén, Carlos E.
  • 1 Jiménez, C. Hugo
  • 1 Lalonde, Olivier
  • 1 Mande, Nikhil S.
  • 1 Palazuelos, Carlos
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Quantum complexity theory

  • Refine by Keyword
  • 1 Bell inequalities
  • 1 Communication complexity
  • 1 nonlocality
  • 1 quantum communication complexity
  • 1 quantum correlations
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2015
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail