4 Search Results for "Wallheimer, Nathan"


Document
Spanning Adjacency Oracles in Sublinear Time

Authors: Greg Bodwin and Henry Fleischmann

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Suppose we are given an n-node, m-edge input graph G, and the goal is to compute a spanning subgraph H on O(n) edges. This can be achieved in linear O(m + n) time via breadth-first search. But can we hope for sublinear runtime in some range of parameters - for example, perhaps O(n^{1.9}) worst-case runtime, even when the input graph has n² edges? If the goal is to return H as an adjacency list, there are simple lower bounds showing that Ω(m + n) runtime is necessary. If the goal is to return H as an adjacency matrix, then we need Ω(n²) time just to write down the entries of the output matrix. However, we show that neither of these lower bounds still apply if instead the goal is to return H as an implicit adjacency matrix, which we call an adjacency oracle. An adjacency oracle is a data structure that gives a user the illusion that an adjacency matrix has been computed: it accepts edge queries (u, v), and it returns in near-constant time a bit indicating whether or not (u, v) ∈ E(H). Our main result is that, for any 0 < ε < 1, one can construct an adjacency oracle for a spanning subgraph on at most (1+ε)n edges, in Õ(n ε^{-1}) time (hence sublinear time on input graphs with m ≫ n edges), and that this construction time is near-optimal. Additional results include constructions of adjacency oracles for k-connectivity certificates and spanners, which are similarly sublinear on dense-enough input graphs. Our adjacency oracles are closely related to Local Computation Algorithms (LCAs) for graph sparsifiers; they can be viewed as LCAs with some computation moved to a preprocessing step, in order to speed up queries. Our oracles imply the first LCAs for computing sparse spanning subgraphs of general input graphs in Õ(n) query time, which works by constructing our adjacency oracle, querying it once, and then throwing the rest of the oracle away. This addresses an open problem of Rubinfeld [CSR '17].

Cite as

Greg Bodwin and Henry Fleischmann. Spanning Adjacency Oracles in Sublinear Time. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 19:1-19:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ITCS.2024.19,
  author =	{Bodwin, Greg and Fleischmann, Henry},
  title =	{{Spanning Adjacency Oracles in Sublinear Time}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{19:1--19:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.19},
  URN =		{urn:nbn:de:0030-drops-195475},
  doi =		{10.4230/LIPIcs.ITCS.2024.19},
  annote =	{Keywords: Graph algorithms, Sublinear algorithms, Data structures, Graph theory}
}
Document
Color Fault-Tolerant Spanners

Authors: Asaf Petruschka, Shay Sapir, and Elad Tzalik

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We initiate the study of spanners in arbitrarily vertex- or edge-colored graphs (with no "legality" restrictions), that are resilient to failures of entire color classes. When a color fails, all vertices/edges of that color crash. An f-color fault-tolerant (f-CFT) t-spanner of an n-vertex colored graph G is a subgraph H that preserves distances up to factor t, even in the presence of at most f color faults. This notion generalizes the well-studied f-vertex/edge fault-tolerant (f-V/EFT) spanners. The size (number of edges) of an f-V/EFT spanner crucially depends on the number f of vertex/edge faults to be tolerated. In the colored variants, even a single color fault can correspond to an unbounded number of vertex/edge faults. The key conceptual contribution of this work is in showing that the size required by an f-CFT spanner is in fact comparable to its uncolored counterpart, with no dependency on the size of color classes. We provide optimal bounds on the size required by f-CFT (2k-1)-spanners, as follows: - When vertices have colors, we show an upper bound of O(f^{1-1/k} n^{1+1/k}) edges. This precisely matches the (tight) bounds for (2k-1)-spanners resilient to f individual vertex faults [Bodwin et al., SODA 2018; Bodwin and Patel, PODC 2019]. - For colored edges, we show that O(f n^{1+1/k}) edges are always sufficient. Further, we prove this is tight, i.e., we provide an Ω(f n^{1+1/k}) (worst-case) lower bound. The state-of-the-art bounds known for the corresponding uncolored setting of edge faults are (roughly) Θ(f^{1/2} n^{1+1/k}) [Bodwin et al., SODA 2018; Bodwin, Dinitz and Robelle, SODA 2022]. - We also consider a mixed model where both vertices and edges are colored. In this case, we show tight Θ(f^{2-1/k} n^{1+1/k}) bounds. Thus, CFT spanners exhibit an interesting phenomenon: while (individual) edge faults are "easier" than vertex faults, edge-color faults are "harder" than vertex-color faults. Our upper bounds are based on a generalization of the blocking set technique of [Bodwin and Patel, PODC 2019] for analyzing the (exponential-time) greedy algorithm for FT spanners. We complement them by providing efficient constructions of CFT spanners with similar size guarantees, based on the algorithm of [Dinitz and Robelle, PODC 2020].

Cite as

Asaf Petruschka, Shay Sapir, and Elad Tzalik. Color Fault-Tolerant Spanners. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 88:1-88:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{petruschka_et_al:LIPIcs.ITCS.2024.88,
  author =	{Petruschka, Asaf and Sapir, Shay and Tzalik, Elad},
  title =	{{Color Fault-Tolerant Spanners}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{88:1--88:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.88},
  URN =		{urn:nbn:de:0030-drops-196160},
  doi =		{10.4230/LIPIcs.ITCS.2024.88},
  annote =	{Keywords: Fault tolerance, Graph spanners}
}
Document
Worst-Case to Expander-Case Reductions

Authors: Amir Abboud and Nathan Wallheimer

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).

Cite as

Amir Abboud and Nathan Wallheimer. Worst-Case to Expander-Case Reductions. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 1:1-1:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ITCS.2023.1,
  author =	{Abboud, Amir and Wallheimer, Nathan},
  title =	{{Worst-Case to Expander-Case Reductions}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.1},
  URN =		{urn:nbn:de:0030-drops-175044},
  doi =		{10.4230/LIPIcs.ITCS.2023.1},
  annote =	{Keywords: Fine-Grained Complexity, Expander Decomposition, Reductions, Exact and Parameterized Complexity, Expander Graphs, Triangle, Maximum Matching, Clique, 4-Cycle, Vertex Cover, Dominating Set}
}
Document
Improved Compression of the Okamura-Seymour Metric

Authors: Shay Mozes, Nathan Wallheimer, and Oren Weimann

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Let G = (V,E) be an undirected unweighted planar graph. Let S = {s_1,…,s_k} be the vertices of some face in G and let T ⊆ V be an arbitrary set of vertices. The Okamura-Seymour metric compression problem asks to compactly encode the S-to-T distances. Consider a vector storing the distances from an arbitrary vertex v to all vertices S = {s_1,…,s_k} in their cyclic order. The pattern of v is obtained by taking the difference between every pair of consecutive values of this vector. In STOC'19, Li and Parter used a VC-dimension argument to show that in planar graphs, the number of distinct patterns, denoted p_#, is only O(k³). This resulted in a simple Õ(min{k⁴+|T|, k⋅|T|}) space compression of the Okamura-Seymour metric. We give an alternative proof of the p_# = O(k³) bound that exploits planarity beyond the VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that distances among vertices of S are bounded by k. Our method implies the following: (1) An Õ(p_#+k+|T|) space compression of the Okamura-Seymour metric, thus improving the compression of Li and Parter to Õ(min{k³+|T|, k⋅|T|}). (2) An optimal Õ(k+|T|) space compression of the Okamura-Seymour metric, in the case where the vertices of T induce a connected component in G. (3) A tight bound of p_# = Θ(k²) for the family of Halin graphs, whereas the VC-dimension argument is limited to showing p_# = O(k³).

Cite as

Shay Mozes, Nathan Wallheimer, and Oren Weimann. Improved Compression of the Okamura-Seymour Metric. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 27:1-27:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mozes_et_al:LIPIcs.ISAAC.2022.27,
  author =	{Mozes, Shay and Wallheimer, Nathan and Weimann, Oren},
  title =	{{Improved Compression of the Okamura-Seymour Metric}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.27},
  URN =		{urn:nbn:de:0030-drops-173123},
  doi =		{10.4230/LIPIcs.ISAAC.2022.27},
  annote =	{Keywords: Shortest paths, planar graphs, metric compression, distance oracles}
}
  • Refine by Author
  • 2 Wallheimer, Nathan
  • 1 Abboud, Amir
  • 1 Bodwin, Greg
  • 1 Fleischmann, Henry
  • 1 Mozes, Shay
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Sparsification and spanners

  • Refine by Keyword
  • 1 4-Cycle
  • 1 Clique
  • 1 Data structures
  • 1 Dominating Set
  • 1 Exact and Parameterized Complexity
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail