2 Search Results for "Wolf, Julian"


Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
Document
WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core

Authors: Christine Rochange, Armelle Bonenfant, Pascal Sainrat, Mike Gerdes, Julian Wolf, Theo Ungerer, Zlatko Petrov, and Frantisek Mikulu

Published in: OASIcs, Volume 15, 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010)


Abstract
To meet performance requirements as well as constraints on cost and power consumption, future embedded systems will be designed with multi-core processors. However, the question of timing analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-core processor has been designed with the appropriate system software. They both guarantee that the WCET of tasks running on different cores can be safely analyzed since their possible interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still not straightforward and a high-level preliminary analysis of the communication and synchronization patterns must be performed. In this paper, we report on our experience in evaluating the WCET of a parallel 3D multigrid solver code and we propose lines for further research on this topic.

Cite as

Christine Rochange, Armelle Bonenfant, Pascal Sainrat, Mike Gerdes, Julian Wolf, Theo Ungerer, Zlatko Petrov, and Frantisek Mikulu. WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core. In 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010). Open Access Series in Informatics (OASIcs), Volume 15, pp. 90-100, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{rochange_et_al:OASIcs.WCET.2010.90,
  author =	{Rochange, Christine and Bonenfant, Armelle and Sainrat, Pascal and Gerdes, Mike and Wolf, Julian and Ungerer, Theo and Petrov, Zlatko and Mikulu, Frantisek},
  title =	{{WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core}},
  booktitle =	{10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010)},
  pages =	{90--100},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-21-7},
  ISSN =	{2190-6807},
  year =	{2010},
  volume =	{15},
  editor =	{Lisper, Bj\"{o}rn},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2010.90},
  URN =		{urn:nbn:de:0030-drops-28298},
  doi =		{10.4230/OASIcs.WCET.2010.90},
  annote =	{Keywords: WCET analysis, multicore, timing predictability}
}
  • Refine by Author
  • 1 Assadi, Sepehr
  • 1 Bonenfant, Armelle
  • 1 Gerdes, Mike
  • 1 Ghosh, Prantar
  • 1 Loff, Bruno
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Lower bounds and information complexity
  • 1 Theory of computation → Streaming, sublinear and near linear time algorithms

  • Refine by Keyword
  • 1 Communication complexity
  • 1 Graph streaming
  • 1 Lower bounds
  • 1 WCET analysis
  • 1 k-Cores and degeneracy
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2010
  • 1 2024