2 Search Results for "Yang, Yuxiang"


Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Is Global Asymptotic Cloning State Estimation?

Authors: Yuxiang Yang and Giulio Chiribella

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
We investigate the asymptotic relationship between quantum cloning and quantum estimation from the global point of view where all the copies produced by the cloner are considered jointly. For an N-to-M cloner, we consider the overall fidelity between the state of the M output systems and the state of M ideal copies, and we ask whether the optimal fidelity is attained by a measure and-prepare protocol in the limit M -> \infty. In order to gain intuition into the general problem, we analyze two concrete examples: i) cloning qubit states on the equator of the Bloch sphere and ii) cloning two-qubit maximally entangled states. In the first case, we show that the optimal measure-and-prepare fidelity converges to the fidelity of the optimal cloner in the limit M -> \infty. In the second case, we restrict our attention to economical covariant cloners, and again, we exhibit a measure-and-prepare protocol that achieves asymptotically the optimal fidelity. Quite counterintuitively, in both cases the optimal states that have to be prepared in order to maximize the overall fidelity are not product states corresponding to M identical copies, but instead suitable M-partite entangled states.

Cite as

Yuxiang Yang and Giulio Chiribella. Is Global Asymptotic Cloning State Estimation?. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 220-234, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{yang_et_al:LIPIcs.TQC.2013.220,
  author =	{Yang, Yuxiang and Chiribella, Giulio},
  title =	{{Is Global Asymptotic Cloning State Estimation?}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{220--234},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.220},
  URN =		{urn:nbn:de:0030-drops-43100},
  doi =		{10.4230/LIPIcs.TQC.2013.220},
  annote =	{Keywords: quantum cloning, quantum estimation}
}
  • Refine by Author
  • 1 Chiribella, Giulio
  • 1 Delgrande, James P.
  • 1 Glimm, Birte
  • 1 Meyer, Thomas
  • 1 Truszczynski, Miroslaw
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Declarative representations
  • 1 Formal logic
  • 1 Knowledge representation and reasoning
  • 1 quantum cloning
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2013
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail