35 Search Results for "Yoshida, Nobuko"


Artifact
Software
https://github.com/ekiciburak/sessionTreeST/tree/localtype

Authors: Burak Ekici and Nobuko Yoshida


Abstract

Cite as

Burak Ekici, Nobuko Yoshida. https://github.com/ekiciburak/sessionTreeST/tree/localtype (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-22491,
   title = {{https://github.com/ekiciburak/sessionTreeST/tree/localtype}}, 
   author = {Ekici, Burak and Yoshida, Nobuko},
   note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:33823a0054801bcf4ea95f2dffe733579cbd53c8;origin=https://github.com/ekiciburak/sessionTreeST;visit=swh:1:snp:e36eb4662d8731a175e95b8081f861339f588412;anchor=swh:1:rev:a8aafb319882c90f11b2b43032ce9faabace5f95}{\texttt{swh:1:dir:33823a0054801bcf4ea95f2dffe733579cbd53c8}} (visited on 2024-11-28)},
   url = {https://github.com/ekiciburak/sessionTreeST/tree/itp2024},
   doi = {10.4230/artifacts.22491},
}
Document
Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Authors: Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Session types using affinity and exception handling mechanisms have been developed to ensure the communication safety of protocols implemented in concurrent and distributed programming languages. Nevertheless, current affine session types are inadequate for specifying real-world asynchronous protocols, as they are usually imposed by time constraints which enable timeout exceptions to prevent indefinite blocking while awaiting valid messages. This paper proposes the first formal integration of affinity, time constraints, timeouts, and time-failure handling based on multiparty session types for supporting reliability in asynchronous distributed systems. With this theory, we statically guarantee that asynchronous timed communication is deadlock-free, communication safe, while being fearless - never hindered by timeout errors or abrupt terminations. To implement our theory, we introduce MultiCrusty^T, a Rust toolchain designed to facilitate the implementation of safe affine timed protocols. MultiCrusty^T leverages generic types and the time library to handle timed communications, integrated with optional types for affinity. We evaluate MultiCrusty^T by extending diverse examples from the literature to incorporate time and timeouts. We also showcase the correctness by construction of our approach by implementing various real-world use cases, including protocols from the Internet of Remote Things domain and real-time systems.

Cite as

Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida. Fearless Asynchronous Communications with Timed Multiparty Session Protocols. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 19:1-19:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hou_et_al:LIPIcs.ECOOP.2024.19,
  author =	{Hou, Ping and Lagaillardie, Nicolas and Yoshida, Nobuko},
  title =	{{Fearless Asynchronous Communications with Timed Multiparty Session Protocols}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{19:1--19:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.19},
  URN =		{urn:nbn:de:0030-drops-208681},
  doi =		{10.4230/LIPIcs.ECOOP.2024.19},
  annote =	{Keywords: Session Types, Concurrency, Time Failure Handling, Affinity, Timeout, Rust}
}
Document
Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation

Authors: Martin Vassor and Nobuko Yoshida

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches that lead to errors such as deadlocks. Existing protocol specification formats have been developed to prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols, specifications can be extended with refinements, i.e. logical predicates to control the behaviour of the protocol based on previous values exchanged. Unfortunately, existing refinement theories and implementations are tightly coupled with specification formats. This paper proposes a framework for multiparty message-passing protocols with refinements and its implementation in Rust. Our work decouples correctness of refinements from the underlying model of computation, which results in a specification-agnostic framework. Our contributions are threefold. First, we introduce a trace system which characterises valid refined traces, i.e. a sequence of sending and receiving actions correct with respect to refinements. Second, we give a correct model of computation named refined communicating system (RCS), which is an extension of communicating automata systems with refinements. We prove that RCS only produce valid refined traces. We show how to generate RCS from mainstream protocol specification formats, such as refined multiparty session types (RMPST) or refined choreography automata. Third, we illustrate the flexibility of the framework by developing both a static analysis technique and an improved model of computation for dynamic refinement evaluation. Finally, we provide a Rust toolchain for decentralised RMPST, evaluate our implementation with a set of benchmarks from the literature, and observe that refinement overhead is negligible.

Cite as

Martin Vassor and Nobuko Yoshida. Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 41:1-41:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vassor_et_al:LIPIcs.ECOOP.2024.41,
  author =	{Vassor, Martin and Yoshida, Nobuko},
  title =	{{Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{41:1--41:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.41},
  URN =		{urn:nbn:de:0030-drops-208906},
  doi =		{10.4230/LIPIcs.ECOOP.2024.41},
  annote =	{Keywords: Message-Passing Concurrency, Session Types, Specification}
}
Document
Artifact
Fearless Asynchronous Communications with Timed Session Types in Rust (Artifact)

Authors: Nicolas Lagaillardie, Ping Hou, and Nobuko Yoshida

Published in: DARTS, Volume 10, Issue 2, Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
We introduce MultiCrusty^T, a Rust toolchain designed to facilitate the implementation of safe affine timed protocols. MultiCrusty^T leverages generic types and the time library to handle timed communications, integrated with optional types for affinity. This artifact allows to evaluate our approach by running examples from the literature, real-world use cases and protocols from real-time systems, featured in the related article, showcasing the correctness by construction of our approach. We allow to see the performance of our solution by running benchmarks and generating graphs, highlighting a less than 10% compile-time and runtime overhead compared with an untimed implementation. We also demonstrate how to implement, step by step, your own timed protocols, from a very basic one with only two parties and simple interactions, to complex ones with more than three parties, choices and recursion.

Cite as

Nicolas Lagaillardie, Ping Hou, and Nobuko Yoshida. Fearless Asynchronous Communications with Timed Session Types in Rust (Artifact). In Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 2, pp. 10:1-10:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{lagaillardie_et_al:DARTS.10.2.10,
  author =	{Lagaillardie, Nicolas and Hou, Ping and Yoshida, Nobuko},
  title =	{{Fearless Asynchronous Communications with Timed Session Types in Rust (Artifact)}},
  pages =	{10:1--10:3},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-342-3},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{2},
  editor =	{Lagaillardie, Nicolas and Hou, Ping and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.10},
  URN =		{urn:nbn:de:0030-drops-209084},
  doi =		{10.4230/DARTS.10.2.10},
  annote =	{Keywords: session types, affine types, \pi-calculus, asynchrony, timeouts, failures, Rust}
}
Document
Artifact
Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation (Artifact)

Authors: Martin Vassor and Nobuko Yoshida

Published in: DARTS, Volume 10, Issue 2, Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches that lead to errors such as deadlocks. Existing protocol specification formats have been developed to prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols, specifications can be extended with refinements, i.e. logical predicates to control the behaviour of the protocol based on previous values exchanged. Unfortunately, existing refinement theories and implementations are tightly coupled with specification formats. This artifact accompanies [Martin Vassor and Nobuko Yoshida, 2024]. It presents an implementation of the framework presented in this paper.

Cite as

Martin Vassor and Nobuko Yoshida. Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation (Artifact). In Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 2, pp. 23:1-23:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{vassor_et_al:DARTS.10.2.23,
  author =	{Vassor, Martin and Yoshida, Nobuko},
  title =	{{Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation (Artifact)}},
  pages =	{23:1--23:5},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-342-3},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{2},
  editor =	{Vassor, Martin and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.23},
  URN =		{urn:nbn:de:0030-drops-209212},
  doi =		{10.4230/DARTS.10.2.23},
  annote =	{Keywords: Message-Passing Concurrency, Session Types, Specification}
}
Document
Typed Compositional Quantum Computation with Lenses

Authors: Jacques Garrigue and Takafumi Saikawa

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We propose a type-theoretic framework for describing and proving properties of quantum computations, in particular those presented as quantum circuits. Our proposal is based on an observation that, in the polymorphic type system of Coq, currying on quantum states allows one to apply quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control this currying, we are further able to separate the combinatorics of the circuit structure from the computational content of gates. We apply our development to define quantum circuits recursively from the bottom up, and prove their correctness compositionally.

Cite as

Jacques Garrigue and Takafumi Saikawa. Typed Compositional Quantum Computation with Lenses. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garrigue_et_al:LIPIcs.ITP.2024.15,
  author =	{Garrigue, Jacques and Saikawa, Takafumi},
  title =	{{Typed Compositional Quantum Computation with Lenses}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.15},
  URN =		{urn:nbn:de:0030-drops-207431},
  doi =		{10.4230/LIPIcs.ITP.2024.15},
  annote =	{Keywords: quantum programming, semantics, lens, currying, Coq, MathComp}
}
Document
Completeness of Asynchronous Session Tree Subtyping in Coq

Authors: Burak Ekici and Nobuko Yoshida

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Multiparty session types (MPST) serve as a foundational framework for formally specifying and verifying message passing protocols. Asynchronous subtyping in MPST allows for typing optimised programs preserving type safety and deadlock freedom under asynchronous interactions where the message order is preserved and sending is non-blocking. The optimisation is obtained by message reordering, which allows for sending messages earlier or receiving them later. Sound subtyping algorithms have been extensively studied and implemented as part of various programming languages and tools including C, Rust and C-MPI. However, formalising all such permutations under sequencing, selection, branching and recursion in session types is an intricate task. Additionally, checking asynchronous subtyping has been proven to be undecidable. This paper introduces the first formalisation of asynchronous subtyping in MPST within the Coq proof assistant. We first decompose session types into session trees that do not involve branching and selection, and then establish a coinductive refinement relation over them to govern subtyping. To showcase our formalisation, we prove example subtyping schemas that appear in the literature, all of which cannot be verified, at the same time, by any of the existing decidable sound algorithms. Additionally, we take the (inductive) negation of the refinement relation from a prior work by Ghilezan et al. [Ghilezan et al., 2023] and re-implement it, significantly reducing the number of rules (from eighteen to eight). We establish the completeness of subtyping with respect to its negation in Coq, addressing the issues concerning the negation rules outlined in the previous work [Ghilezan et al., 2023]. In the formalisation, we use the greatest fixed point of the least fixed point technique, facilitated by the paco library, to define coinductive predicates. We employ parametrised coinduction to prove their properties. The formalisation consists of roughly 10K lines of Coq code, accessible at: https://github.com/ekiciburak/sessionTreeST/tree/itp2024.

Cite as

Burak Ekici and Nobuko Yoshida. Completeness of Asynchronous Session Tree Subtyping in Coq. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ekici_et_al:LIPIcs.ITP.2024.13,
  author =	{Ekici, Burak and Yoshida, Nobuko},
  title =	{{Completeness of Asynchronous Session Tree Subtyping in Coq}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.13},
  URN =		{urn:nbn:de:0030-drops-207418},
  doi =		{10.4230/LIPIcs.ITP.2024.13},
  annote =	{Keywords: asynchronous multiparty session types, session trees, subtyping, Coq}
}
Document
Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Authors: Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Session types provide a typing discipline for message-passing systems. However, most session type approaches assume an ideal world: one in which everything is reliable and without failures. Yet this is in stark contrast with distributed systems in the real world. To address this limitation, we introduce Teatrino, a code generation toolchain that utilises asynchronous multiparty session types (MPST) with crash-stop semantics to support failure handling protocols. We augment asynchronous MPST and processes with crash handling branches. Our approach requires no user-level syntax extensions for global types and features a formalisation of global semantics, which captures complex behaviours induced by crashed/crash handling processes. The sound and complete correspondence between global and local type semantics guarantees deadlock-freedom, protocol conformance, and liveness of typed processes in the presence of crashes. Our theory is implemented in the toolchain Teatrino, which provides correctness by construction. Teatrino extends the Scribble multiparty protocol language to generate protocol-conforming Scala code, using the Effpi concurrent programming library. We extend both Scribble and Effpi to support crash-stop behaviour. We demonstrate the feasibility of our methodology and evaluate Teatrino with examples extended from both session type and distributed systems literature.

Cite as

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous Multiparty Protocols with Crash-Stop Failures. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 1:1-1:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{barwell_et_al:LIPIcs.ECOOP.2023.1,
  author =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Designing Asynchronous Multiparty Protocols with Crash-Stop Failures}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{1:1--1:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.1},
  URN =		{urn:nbn:de:0030-drops-181944},
  doi =		{10.4230/LIPIcs.ECOOP.2023.1},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Code Generation, Scala}
}
Document
Dynamically Updatable Multiparty Session Protocols: Generating Concurrent Go Code from Unbounded Protocols

Authors: David Castro-Perez and Nobuko Yoshida

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Multiparty Session Types (MPST) are a typing disciplines that guarantee the absence of deadlocks and communication errors in concurrent and distributed systems. However, existing MPST frameworks do not support protocols with dynamic unbounded participants, and cannot express many common programming patterns that require the introduction of new participants into a protocol. This poses a barrier for the adoption of MPST in languages that favour the creation of new participants (processes, lightweight threads, etc) that communicate via message passing, such as Go or Erlang. This paper proposes Dynamically Updatable Multiparty Session Protocols, a new MPST theory (DMst) that supports protocols with an unbounded number of fresh participants, whose communication topologies are dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness. We implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst, ensuring by construction, that the different participants will only perform I/O actions that comply with a given protocol specification. We evaluate our toolchain by (1) implementing representative parallel and concurrent algorithms from existing benchmarks, textbooks and literature; (2) showing that GoScr does not introduce significant overheads compared to a naive implementation, for computationally expensive benchmarks; and (3) building three realistic protocols (dynamic task delegation, recursive Domain Name System, and a parallel Min-Max strategy) in GoScr that could not be represented with previous theories of session types.

Cite as

David Castro-Perez and Nobuko Yoshida. Dynamically Updatable Multiparty Session Protocols: Generating Concurrent Go Code from Unbounded Protocols. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 6:1-6:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{castroperez_et_al:LIPIcs.ECOOP.2023.6,
  author =	{Castro-Perez, David and Yoshida, Nobuko},
  title =	{{Dynamically Updatable Multiparty Session Protocols: Generating Concurrent Go Code from Unbounded Protocols}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{6:1--6:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.6},
  URN =		{urn:nbn:de:0030-drops-181995},
  doi =		{10.4230/LIPIcs.ECOOP.2023.6},
  annote =	{Keywords: Multiparty Session Types, Correctness-by-construction, Concurrency, Golang}
}
Document
Artifact
Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)

Authors: Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou

Published in: DARTS, Volume 9, Issue 2, Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
We introduce Teatrino, a toolchain that supports handling multiparty protocols with crash-stop failures and crash-handling behaviours. Teatrino accompanies the novel MPST theory in the related article, and enables users to generate fault-tolerant protocol-conforming Scala code from Scribble protocols. Local types are projected from the global protocol, enabling correctness-by-construction, and are expressed directly as Scala types via the Effpi concurrency library. Teatrino extends both Scribble and Effpi with support for crash-stop behaviour. The generated Scala code is executable and can be further integrated with existing systems. The accompanying theory in the related article guarantees deadlock-freedom and liveness properties for failure handling protocols and their implementation. This artifact includes examples, extended from both session type and distributed systems literature, featured in the related article.

Cite as

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact). In Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023). Dagstuhl Artifacts Series (DARTS), Volume 9, Issue 2, pp. 9:1-9:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{barwell_et_al:DARTS.9.2.9,
  author =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)}},
  pages =	{9:1--9:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2023},
  volume =	{9},
  number =	{2},
  editor =	{Barwell, Adam D. and Hou, Ping and Yoshida, Nobuko and Zhou, Fangyi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.9.2.9},
  URN =		{urn:nbn:de:0030-drops-182492},
  doi =		{10.4230/DARTS.9.2.9},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Code Generation, Scala}
}
Document
Artifact
Dynamically Updatable Multiparty Session Protocols (Artifact)

Authors: David Castro-Perez and Nobuko Yoshida

Published in: DARTS, Volume 9, Issue 2, Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Multiparty Session Types (MPST) are typing disciplines that guarantee the absence of deadlocks and communication errors in concurrent and distributed systems. However, existing MPST frameworks do not support protocols with dynamic unbounded participants, and cannot express many common programming patterns that require the introduction of new participants into a protocol. This poses a barrier for the adoption of MPST in languages that favour the creation of new participants (processes, lightweight threads, etc) that communicate via message passing, such as Go or Erlang. This artifact contains an implementation of Dynamically Updatable Multiparty Session Protocols, a new MPST theory (DMst) that supports protocols with an unbounded number of fresh participants, whose communication topologies are dynamically updatable. DMst guarantees deadlock-freedom and liveness. The artifact comprises a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst, ensuring by construction, that the different participants will only perform I/O actions that comply with a given protocol specification. We evaluate GoScr by (1) implementing representative parallel and concurrent algorithms from existing benchmarks, textbooks and literature; (2) showing that GoScr does not introduce significant overheads compared to a naive implementation, for computationally expensive benchmarks; and (3) building three realistic protocols (dynamic task delegation, recursive Domain Name System, and a parallel Min-Max strategy) in GoScr that could not be represented with previous theories of session types.

Cite as

David Castro-Perez and Nobuko Yoshida. Dynamically Updatable Multiparty Session Protocols (Artifact). In Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023). Dagstuhl Artifacts Series (DARTS), Volume 9, Issue 2, pp. 10:1-10:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{castroperez_et_al:DARTS.9.2.10,
  author =	{Castro-Perez, David and Yoshida, Nobuko},
  title =	{{Dynamically Updatable Multiparty Session Protocols (Artifact)}},
  pages =	{10:1--10:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2023},
  volume =	{9},
  number =	{2},
  editor =	{Castro-Perez, David and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.9.2.10},
  URN =		{urn:nbn:de:0030-drops-182505},
  doi =		{10.4230/DARTS.9.2.10},
  annote =	{Keywords: Multiparty Session Types, Correctness-by-construction, Concurrency, Golang}
}
Document
Generalised Multiparty Session Types with Crash-Stop Failures

Authors: Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Session types enable the specification and verification of communicating systems. However, their theory often assumes that processes never fail. To address this limitation, we present a generalised multiparty session type (MPST) theory with crash-stop failures, where processes can crash arbitrarily. Our new theory validates more protocols and processes w.r.t. previous work. We apply minimal syntactic changes to standard session π-calculus and types: we model crashes and their handling semantically, with a generalised MPST typing system parametric on a behavioural safety property. We cover the spectrum between fully reliable and fully unreliable sessions, via optional reliability assumptions, and prove type safety and protocol conformance in the presence of crash-stop failures. Introducing crash-stop failures has non-trivial consequences: writing correct processes that handle all crash scenarios can be difficult. Yet, our generalised MPST theory allows us to tame this complexity, via model checking, to validate whether a multiparty session satisfies desired behavioural properties, e.g. deadlock-freedom or liveness, even in presence of crashes. We implement our approach using the mCRL2 model checker, and evaluate it with examples extended from the literature.

Cite as

Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty Session Types with Crash-Stop Failures. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 35:1-35:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{barwell_et_al:LIPIcs.CONCUR.2022.35,
  author =	{Barwell, Adam D. and Scalas, Alceste and Yoshida, Nobuko and Zhou, Fangyi},
  title =	{{Generalised Multiparty Session Types with Crash-Stop Failures}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{35:1--35:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.35},
  URN =		{urn:nbn:de:0030-drops-170982},
  doi =		{10.4230/LIPIcs.CONCUR.2022.35},
  annote =	{Keywords: Session Types, Concurrency, Failure Handling, Model Checking}
}
Document
Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

Authors: Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Communicating systems comprise diverse software components across networks. To ensure their robustness, modern programming languages such as Rust provide both strongly typed channels, whose usage is guaranteed to be affine (at most once), and cancellation operations over binary channels. For coordinating components to correctly communicate and synchronise with each other, we use the structuring mechanism from multiparty session types, extending it with affine communication channels and implicit/explicit cancellation mechanisms. This new typing discipline, affine multiparty session types (AMPST), ensures cancellation termination of multiple, independently running components and guarantees that communication will not get stuck due to error or abrupt termination. Guided by AMPST, we implemented an automated generation tool (MultiCrusty) of Rust APIs associated with cancellation termination algorithms, by which the Rust compiler auto-detects unsafe programs. Our evaluation shows that MultiCrusty provides an efficient mechanism for communication, synchronisation and propagation of the notifications of cancellation for arbitrary processes. We have implemented several usecases, including popular application protocols (OAuth, SMTP), and protocols with exception handling patterns (circuit breaker, distributed logging).

Cite as

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 4:1-4:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lagaillardie_et_al:LIPIcs.ECOOP.2022.4,
  author =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  title =	{{Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{4:1--4:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.4},
  URN =		{urn:nbn:de:0030-drops-162324},
  doi =		{10.4230/LIPIcs.ECOOP.2022.4},
  annote =	{Keywords: Rust language, affine multiparty session types, failures, cancellation}
}
Document
Design-By-Contract for Flexible Multiparty Session Protocols

Authors: Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Choreographic models support a correctness-by-construction principle in distributed programming. Also, they enable the automatic generation of correct message-based communication patterns from a global specification of the desired system behaviour. In this paper we extend the theory of choreography automata, a choreographic model based on finite-state automata, with two key features. First, we allow participants to act only in some of the scenarios described by the choreography automaton. While this seems natural, many choreographic approaches in the literature, and choreography automata in particular, forbid this behaviour. Second, we equip communications with assertions constraining the values that can be communicated, enabling a design-by-contract approach. We provide a toolchain allowing to exploit the theory above to generate APIs for TypeScript web programming. Programs communicating via the generated APIs follow, by construction, the prescribed communication pattern and are free from communication errors such as deadlocks.

Cite as

Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-By-Contract for Flexible Multiparty Session Protocols. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 8:1-8:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gheri_et_al:LIPIcs.ECOOP.2022.8,
  author =	{Gheri, Lorenzo and Lanese, Ivan and Sayers, Neil and Tuosto, Emilio and Yoshida, Nobuko},
  title =	{{Design-By-Contract for Flexible Multiparty Session Protocols}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{8:1--8:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.8},
  URN =		{urn:nbn:de:0030-drops-162367},
  doi =		{10.4230/LIPIcs.ECOOP.2022.8},
  annote =	{Keywords: Choreography automata, design by contract, deadlock freedom, Communicating Finite State Machines, TypeScript programming}
}
Document
Artifact
Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

Authors: Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
This artifact contains a version of MultiCrusty, a Rust library designed for writing and checking communication protocols following the Affine Multiparty Session Types theory introduced in our ECOOP'22 paper. MultiCrusty can work, and should be used, with Scribble [Yoshida et al., 2014] and kMC [{Julien} {Lange} and {Nobuko} {Yoshida}, 2019]: with the former tool, users can write correct global protocols and project them onto local Rust types defined within MultiCrusty, this approach is qualified as top-down; while the latter tool allows to check local Rust types written by users, this approach is qualified as bottom-up. Our artifact contains those three tools, their respective source files, as well as the different examples and benchmarks introduced in our paper, all together within a Docker image.

Cite as

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{lagaillardie_et_al:DARTS.8.2.9,
  author =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  title =	{{Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)}},
  pages =	{9:1--9:16},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.2.9},
  URN =		{urn:nbn:de:0030-drops-162075},
  doi =		{10.4230/DARTS.8.2.9},
  annote =	{Keywords: Rust language, affine multiparty session types, failures, cancellation}
}
  • Refine by Author
  • 33 Yoshida, Nobuko
  • 5 Scalas, Alceste
  • 4 Hou, Ping
  • 4 Lagaillardie, Nicolas
  • 4 Neykova, Rumyana
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 8 Concurrency
  • 8 Session Types
  • 6 Scala
  • 6 session types
  • 5 Multiparty Session Types
  • Show More...

  • Refine by Type
  • 34 document
  • 1 artifact

  • Refine by Publication Year
  • 7 2024
  • 5 2022
  • 4 2015
  • 4 2020
  • 4 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail