License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.36
URN: urn:nbn:de:0030-drops-106128
URL: http://drops.dagstuhl.de/opus/volltexte/2019/10612/
Go to the corresponding LIPIcs Volume Portal


Chen, Xue ; Price, Eric

Estimating the Frequency of a Clustered Signal

pdf-format:
LIPIcs-ICALP-2019-36.pdf (0.6 MB)


Abstract

We consider the problem of locating a signal whose frequencies are "off grid" and clustered in a narrow band. Given noisy sample access to a function g(t) with Fourier spectrum in a narrow range [f_0 - Delta, f_0 + Delta], how accurately is it possible to identify f_0? We present generic conditions on g that allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions for k-Fourier-sparse signals that imply recovery of f_0 to within Delta + O~(k^3) from samples on [-1, 1]. This improves upon the best previous bound of O(Delta + O~(k^5))^{1.5}. We also show that no algorithm can do better than Delta + O~(k^2). In the process we provide a new O~(k^3) bound on the ratio between the maximum and average value of continuous k-Fourier-sparse signals, which has independent application.

BibTeX - Entry

@InProceedings{chen_et_al:LIPIcs:2019:10612,
  author =	{Xue Chen and Eric Price},
  title =	{{Estimating the Frequency of a Clustered Signal}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10612},
  URN =		{urn:nbn:de:0030-drops-106128},
  doi =		{10.4230/LIPIcs.ICALP.2019.36},
  annote =	{Keywords: sublinear algorithms, Fourier transform}
}

Keywords: sublinear algorithms, Fourier transform
Seminar: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Issue Date: 2019
Date of publication: 08.07.2019


DROPS-Home | Imprint | Privacy Published by LZI