License
When quoting this document, please refer to the following
URN: urn:nbn:de:0030-drops-13837
URL: http://drops.dagstuhl.de/opus/volltexte/2008/1383/
Go to the corresponding Portal


Hammer, Barbara ; Micheli, Alessio ; Sperduti, Alessandro

A general framework for unsupervised preocessing of structured data

pdf-format:
Document 1.pdf (186 KB)


Abstract

We propose a general framework for unsupervised recurrent and recursive networks. This proposal covers various popular approaches like standard self organizing maps (SOM), temporal Kohonen maps, resursive SOM, and SOM for structured data. We define Hebbian learning within this general framework. We show how approaches based on an energy function, like neural gas, can be transferred to this abstract framework so that proposals for new learning algorithms emerge.

BibTeX - Entry

@InProceedings{hammer_et_al:DSP:2008:1383,
  author =	{Barbara Hammer and Alessio Micheli and Alessandro Sperduti},
  title =	{A general framework for unsupervised preocessing of structured data     	 },
  booktitle =	{Probabilistic, Logical and Relational Learning - A Further Synthesis},
  year =	{2008},
  editor =	{Luc de Raedt and Thomas Dietterich and Lise Getoor and Kristian Kersting and Stephen H. Muggleton},
  number =	{07161},
  series =	{Dagstuhl Seminar Proceedings},
  ISSN =	{1862-4405},
  publisher =	{Internationales Begegnungs- und Forschungszentrum f{\"u}r Informatik (IBFI), Schloss Dagstuhl, Germany},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2008/1383},
  annote =	{Keywords: Relational clustering, median clustering, recursive SOM models, kernel SOM}
}

Keywords: Relational clustering, median clustering, recursive SOM models, kernel SOM
Seminar: 07161 - Probabilistic, Logical and Relational Learning - A Further Synthesis
Issue Date: 2008
Date of publication: 06.03.2008


DROPS-Home | Fulltext Search | Imprint Published by LZI