License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2009.1805
URN: urn:nbn:de:0030-drops-18054
URL: http://drops.dagstuhl.de/opus/volltexte/2009/1805/
Go to the corresponding Portal


Hromkovic, Juraj ; Schnitger, Georg

Ambiguity and Communication

pdf-format:
Document 1.pdf (186 KB)


Abstract

The ambiguity of a nondeterministic finite automaton (NFA) $N$ for input size $n$ is the maximal number of accepting computations of $N$ for an input of size $n$. For all $k,r \in \mathbb{N}$ we construct languages $L_{r,k}$ which can be recognized by NFA's with size $k \cdot$poly$(r)$ and ambiguity $O(n^k)$, but $L_{r,k}$ has only NFA's with exponential size, if ambiguity $o(n^k)$ is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long standing open problem (Ravikumar and Ibarra, 1989, Leung, 1998).

BibTeX - Entry

@InProceedings{hromkovic_et_al:LIPIcs:2009:1805,
  author =	{Juraj Hromkovic and Georg Schnitger},
  title =	{{Ambiguity and Communication}},
  booktitle =	{26th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{553--564},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-09-5},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{3},
  editor =	{Susanne Albers and Jean-Yves Marion},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2009/1805},
  URN =		{urn:nbn:de:0030-drops-18054},
  doi =		{http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1805},
  annote =	{Keywords: Nondeterministic finite automata, Ambiguity, Communication complexity}
}

Keywords: Nondeterministic finite automata, Ambiguity, Communication complexity
Seminar: 26th International Symposium on Theoretical Aspects of Computer Science
Issue Date: 2009
Date of publication: 19.02.2009


DROPS-Home | Fulltext Search | Imprint Published by LZI