Separations of Non-monotonic Randomness Notions

Authors Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, Wolfgang Merkle



PDF
Thumbnail PDF

File

OASIcs.CCA.2009.2260.pdf
  • Filesize: 317 kB
  • 12 pages

Document Identifiers

Author Details

Laurent Bienvenu
Rupert Hölzl
Thorsten Kräling
Wolfgang Merkle

Cite As Get BibTex

Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle. Separations of Non-monotonic Randomness Notions. In 6th International Conference on Computability and Complexity in Analysis (CCA'09). Open Access Series in Informatics (OASIcs), Volume 11, pp. 71-82, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009) https://doi.org/10.4230/OASIcs.CCA.2009.2260

Abstract

In the theory of algorithmic randomness, several notions of random sequence are defined via a game-theoretic approach, and the notions that received most attention are perhaps Martin-L\"of randomness
and computable randomness. The latter notion was introduced by Schnorr and is rather natural: an infinite binary sequence is computably random if no total computable strategy succeeds on it by betting on bits in order. However, computably random sequences can have properties that one may consider to be incompatible with being random, in particular, there are computably random sequences that are highly compressible. The concept of Martin-L\"of randomness is much better behaved in this and other respects, on the other hand its definition in terms of martingales is considerably less natural.

Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined Schnorr's model by also allowing non-monotonic strategies, i.e.\ strategies that do not bet on bits in order. The subsequent ``non-monotonic'' notion of randomness, now called Kolmogorov-Loveland-randomness, has been shown to be quite close to Martin-L\"of randomness, but whether these two classes coincide remains a fundamental open question.

In order to get a better understanding of non-monotonic randomness notions, Miller and Nies introduced some interesting intermediate concepts, where one only allows non-adaptive strategies, i.e., strategies that can still bet non-monotonically, but such that the sequence of betting positions is known in advance (and computable). Recently, these notions were shown by Kastermans and Lempp to differ from Martin-L\"of randomness. We continue the study of the non-monotonic randomness notions introduced by Miller and Nies and obtain results about the Kolmogorov complexities of initial segments that may and may not occur for such sequences, where these results then imply a complete classification of these randomness notions by order of strength.

Subject Classification

Keywords
  • Martin-Löf randomness
  • Kolmogorov-Loveland randomness
  • Kolmogorov complexity
  • martingales
  • betting strategies

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail