License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2010.42
URN: urn:nbn:de:0030-drops-28529
URL: http://drops.dagstuhl.de/opus/volltexte/2010/2852/
Go to the corresponding Portal


Vempala, Santosh S.

Recent Progress and Open Problems in Algorithmic Convex Geometry

pdf-format:
Document 1.pdf (535 KB)


Abstract

This article is a survey of developments in algorithmic convex geometry over the past decade. These include algorithms for sampling, optimization, integration, rounding and learning, as well as mathematical tools such as isoperimetric and concentration inequalities. Several open problems and conjectures are discussed on the way.

BibTeX - Entry

@InProceedings{vempala:LIPIcs:2010:2852,
  author =	{Santosh S. Vempala},
  title =	{{Recent Progress and Open Problems in Algorithmic Convex Geometry}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)},
  pages =	{42--64},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-23-1},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{8},
  editor =	{Kamal Lodaya and Meena Mahajan},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2010/2852},
  URN =		{urn:nbn:de:0030-drops-28529},
  doi =		{http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.42},
  annote =	{Keywords: convex geometry, geometric inequalities, algorithms, sampling, optimization, integration, rounding, learning}
}

Keywords: convex geometry, geometric inequalities, algorithms, sampling, optimization, integration, rounding, learning
Seminar: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)
Issue Date: 2010
Date of publication: 14.12.2010


DROPS-Home | Fulltext Search | Imprint Published by LZI